• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Wu Liqun, Jiao Yangquan, Wang Guorong, Wang Qiangqiang, Rong Hui, A Zhongming, Zhang Fan, Lu Kegai, Tao Zhenpeng, Sun Xiao, Xiang Yao, 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100
    Citation: Wu Liqun, Jiao Yangquan, Wang Guorong, Wang Qiangqiang, Rong Hui, A Zhongming, Zhang Fan, Lu Kegai, Tao Zhenpeng, Sun Xiao, Xiang Yao, 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100

    Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism

    doi: 10.3799/dqkx.2022.100
    • Received Date: 2022-03-20
    • Publish Date: 2022-09-25
    • Uranium mineralization around Kuqa depression is very active. The ore-controlling factors, metallogenic mechanism and metallogenic law, especially the prospective selection, of sandstone⁃type uranium deposits in the lower member of Pliocene Kuqa Formation have become the focus of uranium geologists in recent years. Based on the regional geological data, field geological survey and exploration drilling data, through comprehensive analysis, the author attempts to analyze the key ore-controlling factors and spatial and temporal collocation relationship of the formation and development of sandstone⁃type uranium deposits in the context of basin⁃mountain coupling mechanism (tectonics & sediments & geomorphology), following the general metallogenic mechanism of sandstone⁃type uranium deposits and the research idea from source to sink. From the perspective of uranium metallogenic system analysis, the cooperative ore control mechanism of key ore⁃controlling elements of Kuqa Formation is revealed in order to provide strategic services for uranium exploration. It is found that large-scale intracontinental thrust nappe of the Cenozoic South Tianshan orogenic belt not only controls the filling evolution process of the uranium bearing rock series of the Kuqa Formation, but also restricts the basic pattern and metallogenic process of uranium mineralization in the lower member of the Kuqa Formation. The basin⁃mountain coupling mechanism is the original force driving the formation and development of sandstone⁃type uranium deposits. Although the distribution scale of magmatic rocks in the South Tianshan orogen is limited, U-rich granites exist in the Tomur peak area. The fully developed surface water drainage system, on the one hand, can carry the debris of the orogenic belt to accumulate in the Kuqa depression, thus forming a series of large provenance-sedimentary lobes in stages, creating potential uranium bearing rock series and high-quality uranium reservoir. On the other hand, the drainage system crossing the U-rich granites in the orogenic belt not only provides the accumulation of original trace uranium for the uranium reservoir through physical transportation, but also promotes the development of regional interlayer oxidation zone and dissolved uranium required for mineralization through the derived underground ore-bearing fluid system. In Kuqa depression, the near East-West structure limits the ore-bearing flow field and the development space of interlayer oxidation zone (Baicheng sag). Uranium mineralization is concentrated near the front line of regional interlayer oxidation zone (especially the "water blocking surface" side in the South).At the southern edge of Baicheng sag, with the continuous uplift of Qiulitage structural belt with synsedimentary growth property, the regional ore-bearing flow field and interlayer oxidation zone were forced to migrate northward and caused "left-lateral" movement, thus creating "new" and "old" uranium metallogenic systems including Ridarik uranium deposit.

       

    • loading
    • A, Z. M., Luo, X. G., Zhang, G. H., et al., 2008. Discussion on the Metallogeny of the Ridalike Uranium Deposit in South of the Kuche⁃Baicheng Depression in Tarim Basin. Academic Seminar on the Geology and Mineral Resources of the Tianshan Orogeny, Urumqi (in Chinese).
      Bureau of Geology and Mineral Resources of Xingjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese).
      Chen, J., Liu, Y. F., Li, C., et al., 2017. Continental Hydrocarbon Migration and Accumulation with Palaeo⁃Fluid Potential Field in the South Slope of Kuqa Depression, Tarim Basin. Oil Geophysical Prospecting, 52(4): 841-850 (in Chinese with English abstract).
      Chen, Z. L., Lu, K. G., Wang, G., et al., 2009. Characteristics of the Cenozoic Deformation in Basin/Range Coupling Regions on both Sides of Tianshan Mountains and Its Geodynamics. Earth Science Frontiers, 16(3): 149-159 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.03.011
      Han, B. F., He, G. Q., Wu, T. R., et al., 2004. Zircon U⁃Pb Dating and Geochemical Features of Early Paleozoic Granites from Tianshan, Xinjiang: Implications for Tectonic Evolution. Xinjiang Geology, 22(1): 4-11 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2004.01.002
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2009. Geological Structure and Its Controls on Giant Oil and Gas Fields in Kuqa Depression, Tarim Basin: A Clue from New Shot Seismic Data. Geotectonica et Metallogenia, 33(1): 19-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.003
      Huang, H., Zhang, Z. C., Zhang, D. Y., et al., 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, 85(8): 1305-1333 (in Chinese with English abstract).
      Hubert⁃Ferrari, A., Suppe, J., Gonzalez⁃Mieres, R., et al., 2007. Mechanisms of Active Folding of the Landscape (Southern Tian Shan, China). Journal of Geophysical Research: Solid Earth, 112(B3): B03S09. https://doi.org/10.1029/2006JB004362
      Jiang, C. Y., Mu, Y. M., Bai, K. Y., et al., 1999. Chronology, Petrology, Geochemistry and Tectonic Environment of Granitoids in the Southern Tianshan Mountain, Western China. Acta Petrologica Sinica, 15(2): 298-308 (in Chinese with English abstract).
      Jiao, Y. Q., Lu, Z. S., Zhuang, X. G., et al., 1997. Dynamical Process and Genesis of Late Triassic Sediment Filling in Ordos Basin. Journal of Earth Science, 8(1): 45-48.
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary⁃Tectonic Setting of the Deposition⁃Type Uranium Deposits Forming in the Paleo⁃Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2018a. Geological Modeling of Uranium Reservoir: The Geological Foundation of Revealing the Metallogenic Mechanism and Solving "Remaining Uranium". Earth Science, 43(10): 3568-3583 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2018b. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone⁃Type Uranium Deposits and Its Ore⁃Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021a. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696.
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021b. Geological Modeling for Uranium Reservoir Heterogeneity: A Sedimentology Basis for Revealing Metallogenic Mechanism and Enhancing Recovery of Sandstone⁃Type Uranium Deposits in Zhiluo Formation in Ordos Basin. China University of Geosciences Press, Wuhan (in Chinese).
      Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Sedimentology of Uranium Reservior: The Foundation of Sandstone Type Uranium Deposit Exploration and Development. Geological Publishing House, Beijing (in Chinese).
      Li, S. H., 2021. Geochemical and Petrological Characteristics of Lower Member of Kuche Formation in Ridalike Area, Northern Margin of Tarim Basin. Xinjiang Geology, 39(1): 124-128 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2021.01.017
      Li, S. J., Shi, Y. H., Wang, Q. C., et al., 2007. Changes of Detrital Heavy Minerals' Composition in the Kuqa Depression From Cretaceous. Chinese Journal of Geology, 42(4): 709-721 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2007.04.007
      Li, S. Q., Tang, P. C., Rao, G., 2013. Cenozoic Deformation Characteristics and Controlling Factors of Kalayuergun Structural Belt, Kuqa Fold and Thrust Belt, Southern Tianshan. Earth Science, 38(4): 859-869 (in Chinese with English abstract).
      Li, X., Zhong, D. K., Li, Y., et al., 2013. Sedimentary Characteristics and Model of the Alluvial Fan in Kuche Formation of Neogene in Kuqa Depression. Geoscience, 27(3): 669-680 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.019
      Li, Y. J., Song, W. J., Mai, G. R., et al., 2001. Characteristics of Kuqa and Northern Tarim Foreland Basins and Their Coupling Relation to South Tianshan Orogen. Xinjiang Petroleum Geology, 22(5): 376-381 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2001.05.004
      Liu, G., Wang, G. R., A, Z. M., 2010. Relations between the Structural Evolution in Cenozoic and Uranium Metallogeny in the North of Talimu Basin. Xinjiang Geology, 28(1): 95-98 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2010.01.018
      Lu, K. G., Wang, G. R., Sun, X., 2019. Interlayered oxidation⁃Zone Styles in Fault⁃Fold Belts of the Northern Tarim Basin and Its Controlling to the Formation of Sandstone⁃Type Uranium Deposits. Journal of Geomechanics, 25(1): 115-124 (in Chinese with English abstract).
      Ma, L. T., Zhang, Z. C., Dong, S. Y., et al., 2010. Geology and Geochemistry of the Yingmailai Granitic Intrusion in the Southern Tianshan and Its Implications. Earth Science, 35(6): 908-919 (in Chinese with English abstract).
      Miao, J. J., Jia, C. Z., Wang, Z. M., et al., 2005. Stratigraphic Configuration Control on Tectonic Deformation along the Qiultag Anticline Belt of Kuqa Area, Northern Tarim Basin. Chinese Journal of Geology, 40(4): 558-569 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2005.04.011
      Peng, S. T., Li, Z., Xu, C. W., 2009. Provenance of Early Cretaceous Deposites in Kuqa Subbasin, the Southern Margin of Tianshan: Implication from Detrital Zircon LA⁃ICP⁃MS Age Data. Acta Sedimentologica Sinica, 27(5): 956-966 (in Chinese with English abstract).
      Qi, J. F., Li, Y., Wu, C., et al., 2013. The Interpretation Models and Discussion on the Contractive Structure Deformation of Kuqa Depression, Tarim Basin. Geology in China, 40(1): 106-120 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.01.007
      Scientific Expedition Team on Mountaineering of the Chinese Academy of Sciences, 1985. Geology and Paleontology of Tuomeur Peak Region, Tianshan. Xijiang People's Publishing House, Urumqi (in Chinese).
      Sun, J. M., Li, Y., Zhang, Z. Q., et al., 2009. Magnetostratigraphic Data on Neogene Growth Folding in the Foreland Basin of the Southern Tianshan Mountains. Geology, 37(11): 1051-1054. https://doi.org/10.1130/g30278a.1
      Tang, L. J., Qiu, H. J., Yun, L., et al., 2012. Analysis of Basin⁃Mountain Coupling and Transition of the Northern Tarim Basin⁃Southern Tianshan Orogenic Belt. Earth Science Frontiers, 19(5): 195-204 (in Chinese with English abstract).
      Tang, P. C., Rao, G., Li, S. Q., et al., 2018. The Effect of Salt Thickness on Fold Lateral Linkage: A Case Study of the Anticlines in the Leading Edge of the Western Kuqa Fold and Thrust Belt, South Tianshan. Acta Geologica Sinica, 92(3): 437-448 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.03.002
      Tao, Z. L., Yin, J. Y., Chen, W., et al., 2019. Sr⁃Nd⁃Hf Isotopic Characteristics of Early Permian I⁃Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582 (in Chinese with English abstract).
      Wang, C., Luo, J. H., Che, Z. C., et al., 2009. Geochemical Characteristics and U⁃Pb LA⁃ICP⁃MS Zircon Dating of the Oxidaban Pluton from Xinjiang, China: Implications for a Paleozoic Oceanic Subduction Process in Southwestern Tianshan. Acta Geologica Sinica, 83(2): 272-283 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.02.012
      Wang, G. R., Lu, K. G., Liu, G., et al., 2012. Some Problems of Sandstone Type Uranium Deposit Prospecting in Tarim Basin. The National Symposium on the Construction of Large Uranium Mining Bases, Haikou (in Chinese).
      Wang, M., Zhang, J. J., Qi, G. W., et al., 2014. Geochemistry and Geochronology of Early Permian Acid Volcanic Rocks along Kuqa River and Its Tectonic Implication in the Southern Margin of South Tianshan Orogen, Xinjiang. Chinese Journal of Geology, 49(1): 242-258 (in Chinese with English abstract).
      Wang, Q. C., Li, Z., 2003. Basin⁃Orogen Coupling and Origin of Sedimentary Basins. Acta Sedimentologica Sinica, 21(1): 24-30 (in Chinese with English abstract).
      Wang, S. W., 2020. Geochemical Characteristics and Geological Significance of the Oxidaban Complex Rock Mass, South Tianshan, Xinjiang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, Y. Y., Wang, Q. Q., Wang, G. R., 2021. Prospecting Direction of Sandstone Type Uranium Deposits of Kuqa Formation, Kuqa Depression. Uranium Geology, 37(3): 369-376 (in Chinese with English abstract).
      Wu, G. H., Luo, C. S., Hu, T. P., et al., 2007. Fold⁃Related Faulting: An Example from the Cenozoic Salt⁃Overlying Beds in the Kuqa Depression. Chinese Journal of Geology, 42(3): 496-505 (in Chinese with English abstract).
      Wu, L. Q., Jiao, Y. Q., Roger, M., et al., 2009. Sedimentological Setting of Sandstone⁃Type Uranium Deposits in Coal Measures on the Southwest Margin of the Turpan⁃Hami Basin, China. Journal of Asian Earth Sciences, 36(2-3): 223-237. https://doi.org/10.1016/j.jseaes.2009.06.003
      Xia, B., Zhang, L. F., 2021. High T/P Metamorphic Rocks in Southern Yili Plate: Representative for Precambrian Crystalline Basement or Active Continental Margin? Earth Science, 46(6): 1960-1972 (in Chinese with English abstract).
      Yu, H. B., Qi, J. F., Shi, J., et al., 2015. Paleo⁃Uplift Formation and Evolution in the Xiqiu Structural Belt of the Kuqa Depression, Tarim Basin. Chinese Journal of Geology, 50(2): 524-535 (in Chinese with English abstract).
      Yu, Y. X., Wang, P. W., 2009. Balanced Cross⁃Sections of Salt Structures in Kuqa Foreland Thrust Belt in Northern Part of Tarim Basin. Marine Origin Petroleum Geology, 14(1): 57-60 (in Chinese with English abstract).
      Zhang, B., Chen, W., Sun, J. B., et al., 2016. The Thermal History and Uplift Process of the Ouxidaban Pluton in the South Tianshan Orogen: Evidence from Ar⁃Ar and (U⁃Th)/He. Science in China (Series D), 46(3): 392-405 (in Chinese).
      Zhang, T., 2014. Cenozoic High Resolution Magnetostratigraphy in the Kuqa Depression and Tectonic Evolution of the South Tianshan Mountains (Dissertation). Luanzhou University, Lanzhou (in Chinese with English abstract).
      Zhang, Y. Q., Qian, X. L., 2001. Concept and Mechanism of Basin Mountain Coupling. Chinese Geology, 28(3): 47 (in Chinese with English abstract).
      Zhang, Z. C., Dong, S. Y., Huang, H., et al., 2009. Geology and Geochemistry of the Permian Intermediate⁃Acid Intrusions in the Southwestern Tianshan, Xinjiang, China: Implications for Petrogenesis and Tectonics. Geological Bulletin of China, 28(12): 1827-1839 (in Chinese with English abstract).
      Zhou, T. X., Chen, J. F., Xie, Z., et al., 2000. Isotopic Geochemistry of Granitic Rocks from Tuomuer Peak Region, Tianshan, China. Acta Petrologica Sinica, 16(2): 153-160 (in Chinese with English abstract).
      Zhu, Z. X., Li, J. Y., Dong, L. H., et al., 2008. Age Determination and Geological Significance of Devonian Granitic Intrusions in Seriyakeyilake Region, Northern Margin of Tarim Basin, Xinjiang. Acta Petrologica Sinica, 24(5): 971-976 (in Chinese with English abstract).
      阿种明, 罗星刚, 张广辉, 等, 2008. 塔里木盆地库车坳陷南部日达里克铀矿床成因探讨. 乌鲁木齐: 天山地质矿产资源学术讨论会.
      新疆维吾自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社.
      陈军, 刘永福, 李闯, 等, 2017. 库车坳陷南斜坡古流体势场对陆相油气运聚的控制. 石油地球物理勘探, 52(4): 841-850. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201704022.htm
      陈正乐, 鲁克改, 王果, 等, 2009. 天山两侧山前新生代构造变形特征及其成因刍议. 地学前缘, 16(3): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903017.htm
      韩宝福, 何国琦, 吴泰然, 等, 2004. 天山早古生代花岗岩锆石U⁃Pb定年、岩石地球化学特征及其大地构造意义. 新疆地质, 22(1): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200401001.htm
      何登发, 周新源, 杨海军, 等, 2009. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 33(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901004.htm
      黄河, 张招崇, 张东阳, 等, 2011. 中国南天山晚石炭世‒早二叠世花岗质侵入岩的岩石成因与地壳增生. 地质学报, 85(8): 1305-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108007.htm
      姜常义, 穆艳梅, 白开寅, 等, 1999. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境. 岩石学报, 15(2): 298-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.017.htm
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积‒构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      焦养泉, 吴立群, 荣辉, 等, 2018a. 铀储层地质建模: 揭示成矿机理和应对"剩余铀"的地质基础. 地球科学, 43(10): 3568-3583. doi: 10.3799/dqkx.2018.229
      焦养泉, 吴立群, 荣辉, 等, 2018b. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      焦养泉, 吴立群, 荣辉, 等, 2021a. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      焦养泉, 吴立群, 荣辉, 等, 2021b. 铀储层非均质性地质建模——揭示鄂尔多斯盆地直罗组铀成矿机理和提高采收率的沉积学基础. 武汉: 中国地质大学出版社.
      焦养泉, 吴立群, 杨生科, 等, 2006. 铀储层沉积学——砂岩型铀矿勘查与开发的基础. 北京: 地质出版社.
      李书海, 2021. 塔里木盆地北缘日达里克地区库车组下段砂岩岩石学及地球化学特征. 新疆地质, 39(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202101021.htm
      李双建, 石永红, 王清晨, 等, 2007. 白垩纪以来库车坳陷碎屑重矿物组成变化. 地质科学, 42(4): 709-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704008.htm
      李世琴, 唐鹏程, 饶刚, 2013. 南天山库车褶皱‒冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素. 地球科学, 38(4): 859-869. doi: 10.3799/dqkx.2013.084
      李鑫, 钟大康, 李勇, 等, 2013. 库车坳陷新近系库车组冲积扇沉积特征及相模式. 现代地质, 27(3): 669-680. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303019.htm
      李曰俊, 宋文杰, 买光荣, 等, 2001. 库车和北塔里木前陆盆地与南天山造山带的耦合关系. 新疆石油地质, 22(5): 376-381. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200105003.htm
      刘刚, 王国荣, 阿种明, 2010. 塔里木盆地北部新生代构造演化与铀成矿作用. 新疆地质, 28(1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201001024.htm
      鲁克改, 王国荣, 孙潇, 2019. 塔里木盆地北缘断褶带层间氧化带发育样式及砂岩铀矿找矿潜力. 地质力学学报, 25(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201901049.htm
      马乐天, 张招崇, 董书云, 等, 2010. 南天山英买来花岗岩的地质、地球化学特征及其地质意义. 地球科学, 35(6): 908-919. doi: 10.3799/dqkx.2010.106
      苗继军, 贾承造, 王招明, 等, 2005. 塔里木盆地北部库车地区秋里塔格构造带地层结构及其对构造变形的制约. 地质科学, 40(4): 558-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200504012.htm
      彭守涛, 李忠, 许承武, 2009. 库车坳陷北缘早白垩世源区特征: 来自盆地碎屑锆石U⁃Pb年龄的信息. 沉积学报, 27(5): 956-966. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905020.htm
      漆家福, 李勇, 吴超, 等, 2013. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论. 中国地质, 40(1): 106-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301009.htm
      中国科学院登山科学考察队, 1985. 天山托木尔峰地区的地质与古生物. 乌鲁木齐: 新疆人民出版社.
      汤良杰, 邱海峻, 云露, 等, 2012. 塔里木盆地北缘—南天山造山带盆‒山耦合和构造转换. 地学前缘, 19(5): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205021.htm
      唐鹏程, 饶刚, 李世琴, 等, 2018. 盐层厚度对褶皱拼接样式的影响: 以库车褶皱‒冲断带西段前缘背斜带为例. 地质学报, 92(3): 437-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201803002.htm
      陶再礼, 尹继元, 陈文, 等, 2019. 南天山早二叠世I型花岗岩Sr⁃Nd⁃Hf同位素特征: 岩石成因和大陆地壳增长的意义. 地球科学, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079
      王超, 罗金海, 车自成, 等, 2009. 新疆欧西达坂花岗质岩体地球化学特征和锆石LA⁃ICP⁃MS定年: 西南天山古生代洋盆俯冲作用过程的启示. 地质学报, 83(2): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902013.htm
      王国荣, 鲁克改, 刘刚, 等, 2012. 塔里木盆地砂岩型铀矿找矿工作中若干问题的探讨. 海口: 全国铀矿大基地建设学术研讨会.
      王盟, 张进江, 戚国伟, 等, 2014. 新疆南天山南缘库车河流域早二叠世酸性火山岩的地球化学、锆石年代学及构造意义. 地质科学, 49(1): 242-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401018.htm
      王清晨, 李忠, 2003. 盆山耦合与沉积盆地成因. 沉积学报, 21(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200301004.htm
      王世伟, 2020. 新疆南天山欧西达坂复式岩体的地球化学特征及地质意义(硕士学位论文). 北京: 中国地质大学.
      王元元, 王强强, 王国荣, 等, 2021. 库车坳陷库车组砂岩型铀矿找矿方向新解. 铀矿地质, 37(3): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202103006.htm
      邬光辉, 罗春树, 胡太平, 等, 2007. 褶皱相关断层: 以库车坳陷新生界盐上构造层为例. 地质科学, 42(3): 496-505. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200703009.htm
      夏彬, 张立飞, 2021. 伊犁板块南缘高T/P变质岩系: 代表前寒武纪结晶基底还是活动大陆边缘? 地球科学, 46(6): 1960-1972. doi: 10.3799/dqkx.2020.196
      余海波, 漆家福, 师骏, 等, 2015. 塔里木盆地库车坳陷西秋古隆起的形成及其演化. 地质科学, 50(2): 524-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201502011.htm
      余一欣, 王鹏万, 2009. 库车前陆冲断带盐构造区平衡剖面研究. 海相油气地质, 14(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200901012.htm
      张斌, 陈文, 孙敬博, 等, 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析: 来自Ar⁃Ar和(U⁃Th)/He热年代学的证据. 中国科学(D辑), 46(3): 392-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201603009.htm
      张涛, 2014. 天山南麓库车坳陷新生代高精度磁性地层与构造演化(博士学位论文). 兰州: 兰州大学.
      张原庆, 钱祥麟, 2001. 盆山耦合概念及机制. 中国地质, 28(3): 47. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200103008.htm
      张招崇, 董书云, 黄河, 等, 2009. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景. 地质通报, 28(12): 1827-1839. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912016.htm
      周泰禧, 陈江峰, 谢智, 等, 2000. 天山托木尔峰花岗质岩石的同位素地球化学特征. 岩石学报, 16(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002001.htm
      朱志新, 李锦轶, 董连慧, 等, 2008. 新疆塔里木北缘色日牙克依拉克一带泥盆纪花岗质侵入体的确定及其地质意义. 岩石学报, 24(5): 971-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1335) PDF downloads(186) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return