• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 9
    Sep.  2025
    Turn off MathJax
    Article Contents
    Liu Leilei, Zhu Jun, Zhang Shaohe, Sun Pinghe, 2025. Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method. Earth Science, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102
    Citation: Liu Leilei, Zhu Jun, Zhang Shaohe, Sun Pinghe, 2025. Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method. Earth Science, 50(9): 3691-3703. doi: 10.3799/dqkx.2022.102

    Non-Destructive Detection of Anchor Defects Using Ultrasonic Guided Wave and ICEEMDAN Method

    doi: 10.3799/dqkx.2022.102
    • Received Date: 2022-03-02
      Available Online: 2025-10-10
    • Publish Date: 2025-09-25
    • In order to quantitatively detect the internal defects of anchor, it is proposed to use the finite element method to simulate the propagation process of the ultrasonic guided wave in the defective anchor, and to use the improved adaptive noise complete ensemble empirical mode decomposition (ICEEMDAN) method to process the ultrasonic guided wave reflection signal. Then, according to the peak value in the decomposed intrinsic mode function (IMF), the arrival time of the defect reflection wave is obtained, based on which the position and length of the anchorage defects are evaluated. A series of parameter analyses show that the defect location deduced based on the proposed method is in good agreement with the actual situation, and the calculation error of single defect length is within 3.3%, and the calculation error of multiple defect length is less than 10%. Hence, the ultrasonic guided wave method based on ICEEMDAN can be used as an effective means to detect the internal defects of the bolt.

       

    • loading
    • Bai, X. Y., Zhang, M. Y., Kuang, Z., et al., 2020. Load Distribution Function Model of Full-Length Bond GFRP Antifloating Anchor. Journal of Central South University (Science and Technology), 51(7): 1977-1988 (in Chinese with English abstract).
      Beard, M. D., Lowe, M. J. S., Cawley, P., 2003. Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts. Journal of Materials in Civil Engineering, 15(3): 212-218. https://doi.org/10.1061/(asce)0899-1561(2003)15:3(212)
      Cheng, J. L., Sun, X. Y., Feng, L., et al., 2012. Experimental Study on Non-Destructive Testing of Rock Bolts Based on Pseudo-Random Signal. Safety Science, 50(4): 783-786. https://doi.org/10.1016/j.ssci.2011.08.034
      Colominas, M. A., Schlotthauer, G., Torres, M. E., 2014. Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomedical Signal Processing and Control, 14: 19-29. https://doi.org/10.1016/j.bspc.2014.06.009
      Cui, Y., Zou, D. H., 2006. Numerical Simulation of Attenuation and Group Velocity of Guided Ultrasonic Wave in Grouted Rock Bolts. Journal of Applied Geophysics, 59(4): 337-344. https://doi.org/10.1016/j.jappgeo.2006.04.003
      Huang, N. E., Shen, Z., Long, S. R., et al., 1998. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London Series A, 454(1971): 903-998. https://doi.org/10.1098/rspa.1998.0193
      Lee, I. M., Han, S. N., Kim, H. J., et al., 2012. Evaluation of Rock Bolt Integrity Using Fourier and Wavelet Transforms. Tunnelling and Underground Space Technology, 28: 304-314. https://doi.org/10.1016/j.tust.2011.11.009
      Lee, J. S., Min, B. K., Yu, J. D., et al. 2008. Applicability of Non-Destructive Evaluation Technique for Rock Bolt Integrity Using Time-Frequency Analysis. Proceedings of the World Tunnel Congress-2008.
      Madenga, V., Zou, D. H., Zhang, C., 2006. Effects of Curing Time and Frequency on Ultrasonic Wave Velocity in Grouted Rock Bolts. Journal of Applied Geophysics, 59(1): 79-87. https://doi.org/10.1016/j.jappgeo.2005.08.001
      Maio, L., Memmolo, V., Ricci, F., et al., 2015. Ultrasonic Wave Propagation in Composite Laminates by Numerical Simulation. Composite Structures, 121: 64-74. https://doi.org/10.1016/j.compstruct.2014.10.014
      Moser, F., Jacobs, L. J., Qu, J. M., 1999. Modeling Elastic Wave Propagation in Waveguides with the Finite Element Method. NDT & E International, 32(4): 225-234. https://doi.org/10.1016/S0963-8695(98)00045-0
      Rong, X., Lin, P., Liu, J., et al., 2017. A New Approach of Waveform Interpretation Applied in Nondestructive Testing of Defects in Rock Bolts Based on Mode Identification. Mathematical Problems in Engineering, 2017: 7920649. https://doi.org/10.1155/2017/7920649
      Rucka, M., Zima, B., 2015. Elastic Wave Propagation for Condition Assessment of Steel Bar Embedded in Mortar. International Journal of Applied Mechanics and Engineering, 20(1): 159-170. https://doi.org/10.1515/ijame-2015-0011
      Shi, Z. M., Liu, L., Peng, M., et al., 2018. Non-Destructive Testing of Full-Length Bonded Rock Bolts Based on HHT Signal Analysis. Journal of Applied Geophysics, 151: 47-65. https://doi.org/10.1016/j.jappgeo.2018.02.001
      Song, W., 2013. The Development and Application of Testing Instrument of Bolt Anchorage Based on Chirp Signal (Dissertation). Yangtze University, Jingzhou (in Chinese with English abstract).
      Sun, R. L., He, S. W., Huang, K., 2021. Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment. Earth Science, 46(5): 1840-1847 (in Chinese with English abstract).
      Tang, F., Wang, J., Jiao, Y. Y., et al. 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908 (in Chinese with English abstract).
      Wang, B., Ning, Y., Feng, T., et al., 2019. Uniaxial Mechanical Characteristics of Anchored Sandstone and Its Mechanism of Controlling Buckling Rockburst. Journal of Central South University (Science and Technology), 50(9): 2285-2294 (in Chinese with English abstract).
      Wang, C., He, W., Ning, J. G., et al., 2009. Propagation Properties of Guided Wave in the Anchorage Structure of Rock Bolts. Journal of Applied Geophysics, 69(3-4): 131-139. https://doi.org/10.1016/j.jappgeo.2009.08.005
      Xia, D. L., Lyu, S. L., Xiao, B. X., 2003. An Analysis of Bolt Bonding Integrity Based on Wavelet Time Frequency. Geophysical and Geochemical Exploration, 27(4): 312-315, 319 (in Chinese with English abstract).
      Yang, T. C., Wu, Y. Q., Xia, D. L., 2009. An Analytic Method for Rock Bolt's Non-Destructive Testing Signals by Phase Deducted Method. Journal of China Coal Society, 34(5): 629-633 (in Chinese with English abstract).
      Yu, J. D., Bae, M. H., Lee, I. M., et al., 2013. Nongrouted Ratio Evaluation of Rock Bolts by Reflection of Guided Ultrasonic Waves. Journal of Geotechnical and Geoenvironmental Engineering, 139(2): 298-307. https://doi.org/10.1061/(asce)gt.1943-5606.0000767
      Yu, J. D., Byun, Y. H., Lee, J. S., 2019. Experimental and Numerical Studies on Group Velocity of Ultrasonic Guided Waves in Rock Bolts with Different Grouted Ratios. Computers and Geotechnics, 114: 103130. https://doi.org/10.1016/j.compgeo.2019.103130
      Yu, J. D., Lee, J. S., Yoon, H. K., 2021. Effects of Rock Weathering on Guided Wave Propagation in Rock Bolts. Tunnelling and Underground Space Technology, 115: 104069. https://doi.org/10.1016/j.tust.2021.104069
      Zhang, C. S., Zou, D. H., Madenga, V., 2006. Numerical Simulation of Wave Propagation in Grouted Rock Bolts and the Effects of Mesh Density and Wave Frequency. International Journal of Rock Mechanics and Mining Sciences, 43(4): 634-639. https://doi.org/10.1016/j.ijrmms.2005.09.006
      Zhang, W. L., Huang, L., Juang, C. H., 2020. An Analytical Model for Estimating the Force and Displacement of Fully Grouted Rock Bolts. Computers and Geotechnics, 117: 103222. https://doi.org/10.1016/j.compgeo.2019.103222
      Zhang, W. L., Song, Y. H., Huang, L., et al., 2022. Analytical Relations for the Mechanical Properties of Full-Length Bonded Rock Bolts when Subjected to Freeze-Thaw Processes. Computers and Geotechnics, 145: 104667. https://doi.org/10.1016/j.compgeo.2022.104667
      Zhang, Y. Z., Wang, G., Ma, M., et al., 2017. Macro-Micro Study on Failure Mechanism of Rock Mass Anchorage Joints under Different Roughness. Journal of Central South University (Science and Technology), 48(12): 3373-3383 (in Chinese with English abstract).
      Zima, B., Rucka, M., 2017. Non-Destructive Inspection of Ground Anchors Using Guided Wave Propagation. International Journal of Rock Mechanics and Mining Sciences, 94: 90-102. https://doi.org/10.1016/j.ijrmms.2017.03.005
      Zou, D. H., Cui, Y., Madenga, V., et al., 2007. Effects of Frequency and Grouted Length on the Behavior of Guided Ultrasonic Waves in Rock Bolts. International Journal of Rock Mechanics and Mining Sciences, 44(6): 813-819. https://doi.org/10.1016/j.ijrmms.2006.12.002
      白晓宇, 张明义, 匡政, 等, 2020. 全长黏结GFRP抗浮锚杆荷载分布函数模型研究. 中南大学学报(自然科学版), 51(7): 1977-1988.
      宋伟, 2013. 基于Chirp信号锚杆锚固质量检测仪器开发与应用(硕士学位论文). 荆州: 长江大学.
      孙蓉琳, 何世伟, 黄康, 2021. 基于土柱排水实验探讨潜水含水层给水度的影响因素. 地球科学, 46(5): 1840-1847. https://d.wanfangdata.com.cn/periodical/dqkx202105022
      谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. https://d.wanfangdata.com.cn/periodical/dqkx202105027
      王斌, 宁勇, 冯涛, 等, 2019. 加锚砂岩单轴力学特性及屈曲型岩爆控制机制. 中南大学学报(自然科学版), 50(9): 2285-2294.
      夏代林, 吕绍林, 肖柏勋, 2003. 基于小波时频分析的锚固缺陷诊断方法. 物探与化探, 27(4): 312-315, 319.
      杨天春, 吴燕清, 夏代林, 2009. 基于相位推算法的锚杆施工质量无损检测分析方法. 煤炭学报, 34(5): 629-633.
      张永政, 王刚, 马明, 等, 2017. 不同粗糙度下锚固节理破坏机理宏细观研究. 中南大学学报(自然科学版), 48(12): 3373-3383.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (36) PDF downloads(6) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return