Citation: | Huang Honglan, Song Jian, Yang Yun, Wu Jianfeng, Liu Yuanyuan, Wu Jichun, 2024. Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks. Earth Science, 49(8): 2879-2890. doi: 10.3799/dqkx.2022.103 |
Barton, N., Bandis, S., Bakhtar, K., 1985. Strength, Deformation and Conductivity Coupling of Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(3): 121-140. https://doi.org/10.1016/0148-9062(85)93227-9
|
Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
|
Chen, H. F., Zhang, F. W., He, Y., et al., 2016. Geological and Geomorphologic Settings Acting as the Controlling Factors and Indicators for Karst Systems. Hydrogeology & Engineering Geology, 43(5): 42-47(in Chinese with English abstract).
|
de Dreuzy, J. R., Méheust, Y., Pichot, G., 2012. Influence of Fracture Scale Heterogeneity on the Flow Properties of Three-Dimensional Discrete Fracture Networks (DFN). Journal of Geophysical Research: Solid Earth, 117(B11) https://doi.org/10.1029/2012JB009461
|
Dershowitz, W. S., Einstein, H. H., 1988. Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(1): 21-51. https://doi.org/10.1007/BF01019674
|
Gan, L., Ma, H. Y., Shen, Z. Z., 2021. Roughness Characterization of Concave Fracture Surface and Coefficient Fitting of Modified Cubic Law. Journal of Hydraulic Engineering, 52(4): 420-431(in Chinese with English abstract).
|
Hammond, G. E., Lichtner, P. C., 2010. Field-Scale Model for the Natural Attenuation of Uranium at the Hanford 300 Area Using High-Performance Computing. Water Resources Research, 46(9). https://doi.org/10.1029/2009WR008819
|
Hu, Y., Xu, W., Zhan, L., et al., 2022. Modeling of Solute Transport in a Fracture-Matrix System with a Three-Dimensional Discrete Fracture Network. Journal of Hydrology, 605: 127333. https://doi.org/10.1016/j.jhydrol.2021.127333
|
Hyman, J. D., Aldrich, G., Viswanathan, H., et al., 2016. Fracture Size and Transmissivity Correlations: Implications for Transport Simulations in Sparse Three-Dimensional Discrete Fracture Networks Following a Truncated Power Law Distribution of Fracture Size. Water Resources Research, 52(8): 6472-6489. https://doi.org/10.1002/2016WR018806
|
Hyman, J. D., Gable, C. W., Painter, S. L., et al., 2014. Conforming Delaunay Triangulation of Stochastically Generated Three Dimensional Discrete Fracture Networks: A Feature Rejection Algorithm for Meshing Strategy. SIAM Journal on Scientific Computing, 36(4): A1871-A1894. https://doi.org/10.1137/130942541
|
Hyman, J. D., Karra, S., Makedonska, N., et al., 2015. dfnWorks: A Discrete Fracture Network Framework for Modeling Subsurface Flow and Transport. Computers & Geosciences, 84: 10-19. https://doi.org/10.1016/j.cageo.2015.08.001
|
Jordan, G., Rammensee, W., 1998. Dissolution Rates of Calcite (1014) Obtained by Scanning Force Microscopy: Microtopography-Based Dissolution Kinetics on Surfaces with Anisotropic Step Velocities. Geochimica et Cosmochimica Acta, 62(6): 941-947. https://doi.org/10.1016/S0016-7037(98)00030-1
|
Lei, Q., Latham, J. P., Tsang, C. F., 2017. The Use of Discrete Fracture Networks for Modelling Coupled Geomechanical and Hydrological Behaviour of Fractured Rocks. Computers and Geotechnics, 85: 151-176. https://doi.org/10.1016/j.compgeo.2016.12.024
|
Li, X., Li, D., Xu, Y., et al., 2020. A DFN based 3D numerical Approach for Modeling Coupled Groundwater Flow and Solute Transport in Fractured Rock Mass. International Journal of Heat and Mass Transfer, 149: 119179. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119179
|
Li, Y. M., Wen, Z., 2020. Impacts of Non-Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture-Aquifer System. Earth Science, 45(2): 693-700(in Chinese with English abstract).
|
Liang, M., 2010. Numerical Simulation Study of Flow in Single Rough Fractures Based on Fluent(Dissertation). Hefei University of Technology, Hefei(in Chinese with English abstract).
|
Lichtner, P. C., 2016. Kinetic Rate Laws Invariant to Scaling the Mineral Formula Unit. American Journal of Science, 316(5): 437. https://doi.org/10.2475/05.2016.02
|
Long, J. C. S., Karasaki, K., Davey, A., et al., 1990. Preliminary Prediction of Inflow into the D-Holes at the Stripa Mine. Lawrence Berkeley National Laboratory. LBNL Report #: LBL-27182.
|
Makedonska, N., Hyman, J. D., Karra, S., et al., 2016. Evaluating the Effect of Internal Aperture Variability on Transport in Kilometer Scale Discrete Fracture Networks. Advances in Water Resources, 94: 486-497. https://doi.org/10.1016/j.advwatres.2016.06.010
|
Makedonska, N., Painter, S. L., Bui, Q. M., et al., 2015. Particle Tracking Approach for Transport in Three-Dimensional Discrete Fracture Networks. Computational Geosciences, 19(5): 1123-1137. https://doi.org/10.1007/s10596-015-9525-4
|
Molson, J., Aubertin, M., Bussière, B., et al., 2008. Geochemical Transport Modelling of Drainage from Experimental Mine Tailings Cells Covered by Capillary Barriers. Applied Geochemistry, 23(1): 1-24. https://doi.org/10.1016/j.apgeochem.2007.08.004
|
Molson, J., Aubertin, M., Bussière, B., 2012. Reactive Transport Modelling of Acid Mine Drainage within Discretely Fractured Porous Media: Plume Evolution from a Surface Source Zone. Environmental Modelling & Software, 38: 259-270. https://doi.org/10.1016/j.envsoft.2012.06.010
|
Pandey, S., Rajaram, H., 2016. Modeling the Influence of Preferential Flow on the Spatial Variability and Time-Dependence of Mineral Weathering Rates. Water Resources Research, 52(12): 9344-9366. https://doi.org/10.1002/2016WR019026
|
Peters, R. R., Klavetter, E. A., 1988. A Continuum Model for Water Movement in an Unsaturated Fractured Rock Mass. Water Resources Research, 24(3): 416-430. https://doi.org/10.1029/WR024i003p00416
|
Romano, V., Bigi, S., Carnevale, F., et al., 2020. Hydraulic Characterization of a Fault Zone from Fracture Distribution. Journal of Structural Geology, 135: 104036. https://doi.org/10.1016/j.jsg.2020.104036
|
Sweeney, M. R., Gable, C. W., Karra, S., et al., 2020. Upscaled Discrete Fracture Matrix Model (UDFM): an Octree-Refined Continuum Representation of Fractured Porous Media. Computational Geosciences, 24(1): 293-310. https://doi.org/10.1007/s10596-019-09921-9
|
Trinchero, P., Iraola, A., Bruines, P., et al., 2021. Water-Mineral Reactions in a Translated Single Realistic Fracture: Consequences for Contaminant Uptake by Matrix Diffusion. Water Resources Research, 57(10): e2021WR030442. https://doi.org/10.1029/2021WR030442
|
Tsang, Y. W., Tsang, C. F., 1987. Channel Model of Flow through Fractured Media. Water Resources Research, 23(3): 467-479. https://doi.org/10.1029/WR023i003p00467
|
Walter, A. L., Frind, E. O., Blowes, D. W., et al., 1994. Modeling of Multicomponent Reactive Transport in Groundwater: 2. Metal Mobility in Aquifers Impacted by Acidic Mine Tailings Discharge. Water Resources Research, 30(11): 3149-3158. https://doi.org/10.1029/94WR00954
|
Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519(in Chinese with English abstract).
|
White, A. F., Brantley, S. L., 2003. The Effect of Time on the Weathering of Silicate Minerals: Why do Weathering Rates Differ in the Laboratory and Field? Chemical Geology, 202(3): 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001
|
Wilson, C. R., Witherspoon, P. A., Long, J. C. S., et al., 1983. Large-Scale Hydraulic Conductivity Measurements in Fractured Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6): 269-276. https://doi.org/10.1016/0148-9062(83)90596-X
|
Yang, B., Wang, H., Wang, B., et al., 2021. Digital Quantification of Fracture in Full-Scale Rock Using Micro-CT Images: A Fracturing Experiment with N2 and CO2. Journal of Petroleum Science and Engineering, 196: 107682. https://doi.org/10.1016/j.petrol.2020.107682
|
Zhong, Q. M., Chen, J. S., Chen, L., 2006. Symmetry Certification of Permea Bility Tensor and Derivation of Principal Permea Bility of Fractured Rock Mass. Chinese Journal of Rock Mechanics And Engineering, (S1): 2997-3002(in Chinese with English abstract).
|
Zimmerman, R. W., Yeo, I. W., 2000. Fluid Flow in Rock Fractures: From the Navier-Stokes Equations to the Cubic Law. Dynamics of Fluids in Fractured Rock: 213-224. https://doi.org/10.1029/GM122p0213
|
陈宏峰, 张发旺, 何愿, 等, 2016. 地质与地貌条件对岩溶系统的控制与指示. 水文地质工程地质, 43(5): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605006.htm
|
甘磊, 马洪影, 沈振中, 2021. 下凹形态裂隙面粗糙程度表征及立方定律修正系数拟合. 水利学报, 52(4): 420-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202104005.htm
|
梁敏, 2010. 基于Fluent的粗糙单裂隙水流数值模拟研究(硕士学位论文). 合肥: 合肥工业大学.
|
李一鸣, 文章, 2020. 非达西裂隙流对渗透性基岩中流场及溶质羽的影响. 地球科学, 45(2): 693-700. doi: 10.3799/dqkx.2018.345
|
王伟, 付豪, 邢林啸, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
|
钟启明, 陈建生, 陈亮, 2006. 裂隙岩体渗透张量的对称性证明及主渗透性推导. 岩石力学与工程学报, (S1): 2997-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1060.htm
|