• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Huang Honglan, Song Jian, Yang Yun, Wu Jianfeng, Liu Yuanyuan, Wu Jichun, 2024. Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks. Earth Science, 49(8): 2879-2890. doi: 10.3799/dqkx.2022.103
    Citation: Huang Honglan, Song Jian, Yang Yun, Wu Jianfeng, Liu Yuanyuan, Wu Jichun, 2024. Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks. Earth Science, 49(8): 2879-2890. doi: 10.3799/dqkx.2022.103

    Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks

    doi: 10.3799/dqkx.2022.103
    • Received Date: 2022-12-17
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • The geologic discontinuities present in natural fractured rock governs groundwater flow and solute transport process. Due to the complexity of real-world fracture network, discrete fracture network (DFN) is often be described and generated based on specific probability distributions determined by different parameters (shape, location, size, density, orientation, etc.). Due to DFN's highly heterogeneous and an isotropic features, it's a challenge to simulate groundwater flow and solute transport processes using traditional numerical solution based on the experience achieved in porous media. In this paper, a 3-D DFN model is built for field-scale study, and mapped to an equivalent porous medium (EPM) model, which further couples groundwater flow model with the multi-component reactive transport code PFLOTRAN to achieve numerical simulation of the reactive transport process of heavy metal contaminants in the fractured network and quantitative assessment of mass fluxes. The study shows that the behavior of the fracture network gradually transforms into the transport in porous media as the density of the network increases; Both the density and orientation of fracture development affect the connectivity of the fracture network, which in turn affects the migration pattern and flux assessment of different components in fractured rock groundwater flow, where the migration behavior of conservative components and various reactive components are significantly different.Meanwhile, it is shown that roughness has an important influence on the migration process and flux assessment of the transport components in the fracture network.This paper provides an effective simulation and quantitative assessment tool for the reactive transport of heavy metals and groundwater flow in the fractured field.

       

    • loading
    • Barton, N., Bandis, S., Bakhtar, K., 1985. Strength, Deformation and Conductivity Coupling of Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(3): 121-140. https://doi.org/10.1016/0148-9062(85)93227-9
      Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
      Chen, H. F., Zhang, F. W., He, Y., et al., 2016. Geological and Geomorphologic Settings Acting as the Controlling Factors and Indicators for Karst Systems. Hydrogeology & Engineering Geology, 43(5): 42-47(in Chinese with English abstract).
      de Dreuzy, J. R., Méheust, Y., Pichot, G., 2012. Influence of Fracture Scale Heterogeneity on the Flow Properties of Three-Dimensional Discrete Fracture Networks (DFN). Journal of Geophysical Research: Solid Earth, 117(B11) https://doi.org/10.1029/2012JB009461
      Dershowitz, W. S., Einstein, H. H., 1988. Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(1): 21-51. https://doi.org/10.1007/BF01019674
      Gan, L., Ma, H. Y., Shen, Z. Z., 2021. Roughness Characterization of Concave Fracture Surface and Coefficient Fitting of Modified Cubic Law. Journal of Hydraulic Engineering, 52(4): 420-431(in Chinese with English abstract).
      Hammond, G. E., Lichtner, P. C., 2010. Field-Scale Model for the Natural Attenuation of Uranium at the Hanford 300 Area Using High-Performance Computing. Water Resources Research, 46(9). https://doi.org/10.1029/2009WR008819
      Hu, Y., Xu, W., Zhan, L., et al., 2022. Modeling of Solute Transport in a Fracture-Matrix System with a Three-Dimensional Discrete Fracture Network. Journal of Hydrology, 605: 127333. https://doi.org/10.1016/j.jhydrol.2021.127333
      Hyman, J. D., Aldrich, G., Viswanathan, H., et al., 2016. Fracture Size and Transmissivity Correlations: Implications for Transport Simulations in Sparse Three-Dimensional Discrete Fracture Networks Following a Truncated Power Law Distribution of Fracture Size. Water Resources Research, 52(8): 6472-6489. https://doi.org/10.1002/2016WR018806
      Hyman, J. D., Gable, C. W., Painter, S. L., et al., 2014. Conforming Delaunay Triangulation of Stochastically Generated Three Dimensional Discrete Fracture Networks: A Feature Rejection Algorithm for Meshing Strategy. SIAM Journal on Scientific Computing, 36(4): A1871-A1894. https://doi.org/10.1137/130942541
      Hyman, J. D., Karra, S., Makedonska, N., et al., 2015. dfnWorks: A Discrete Fracture Network Framework for Modeling Subsurface Flow and Transport. Computers & Geosciences, 84: 10-19. https://doi.org/10.1016/j.cageo.2015.08.001
      Jordan, G., Rammensee, W., 1998. Dissolution Rates of Calcite (1014) Obtained by Scanning Force Microscopy: Microtopography-Based Dissolution Kinetics on Surfaces with Anisotropic Step Velocities. Geochimica et Cosmochimica Acta, 62(6): 941-947. https://doi.org/10.1016/S0016-7037(98)00030-1
      Lei, Q., Latham, J. P., Tsang, C. F., 2017. The Use of Discrete Fracture Networks for Modelling Coupled Geomechanical and Hydrological Behaviour of Fractured Rocks. Computers and Geotechnics, 85: 151-176. https://doi.org/10.1016/j.compgeo.2016.12.024
      Li, X., Li, D., Xu, Y., et al., 2020. A DFN based 3D numerical Approach for Modeling Coupled Groundwater Flow and Solute Transport in Fractured Rock Mass. International Journal of Heat and Mass Transfer, 149: 119179. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119179
      Li, Y. M., Wen, Z., 2020. Impacts of Non-Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture-Aquifer System. Earth Science, 45(2): 693-700(in Chinese with English abstract).
      Liang, M., 2010. Numerical Simulation Study of Flow in Single Rough Fractures Based on Fluent(Dissertation). Hefei University of Technology, Hefei(in Chinese with English abstract).
      Lichtner, P. C., 2016. Kinetic Rate Laws Invariant to Scaling the Mineral Formula Unit. American Journal of Science, 316(5): 437. https://doi.org/10.2475/05.2016.02
      Long, J. C. S., Karasaki, K., Davey, A., et al., 1990. Preliminary Prediction of Inflow into the D-Holes at the Stripa Mine. Lawrence Berkeley National Laboratory. LBNL Report #: LBL-27182. https://escholarship.org/uc/item/7mb9q37h
      Makedonska, N., Hyman, J. D., Karra, S., et al., 2016. Evaluating the Effect of Internal Aperture Variability on Transport in Kilometer Scale Discrete Fracture Networks. Advances in Water Resources, 94: 486-497. https://doi.org/10.1016/j.advwatres.2016.06.010
      Makedonska, N., Painter, S. L., Bui, Q. M., et al., 2015. Particle Tracking Approach for Transport in Three-Dimensional Discrete Fracture Networks. Computational Geosciences, 19(5): 1123-1137. https://doi.org/10.1007/s10596-015-9525-4
      Molson, J., Aubertin, M., Bussière, B., et al., 2008. Geochemical Transport Modelling of Drainage from Experimental Mine Tailings Cells Covered by Capillary Barriers. Applied Geochemistry, 23(1): 1-24. https://doi.org/10.1016/j.apgeochem.2007.08.004
      Molson, J., Aubertin, M., Bussière, B., 2012. Reactive Transport Modelling of Acid Mine Drainage within Discretely Fractured Porous Media: Plume Evolution from a Surface Source Zone. Environmental Modelling & Software, 38: 259-270. https://doi.org/10.1016/j.envsoft.2012.06.010
      Pandey, S., Rajaram, H., 2016. Modeling the Influence of Preferential Flow on the Spatial Variability and Time-Dependence of Mineral Weathering Rates. Water Resources Research, 52(12): 9344-9366. https://doi.org/10.1002/2016WR019026
      Peters, R. R., Klavetter, E. A., 1988. A Continuum Model for Water Movement in an Unsaturated Fractured Rock Mass. Water Resources Research, 24(3): 416-430. https://doi.org/10.1029/WR024i003p00416
      Romano, V., Bigi, S., Carnevale, F., et al., 2020. Hydraulic Characterization of a Fault Zone from Fracture Distribution. Journal of Structural Geology, 135: 104036. https://doi.org/10.1016/j.jsg.2020.104036
      Sweeney, M. R., Gable, C. W., Karra, S., et al., 2020. Upscaled Discrete Fracture Matrix Model (UDFM): an Octree-Refined Continuum Representation of Fractured Porous Media. Computational Geosciences, 24(1): 293-310. https://doi.org/10.1007/s10596-019-09921-9
      Trinchero, P., Iraola, A., Bruines, P., et al., 2021. Water-Mineral Reactions in a Translated Single Realistic Fracture: Consequences for Contaminant Uptake by Matrix Diffusion. Water Resources Research, 57(10): e2021WR030442. https://doi.org/10.1029/2021WR030442
      Tsang, Y. W., Tsang, C. F., 1987. Channel Model of Flow through Fractured Media. Water Resources Research, 23(3): 467-479. https://doi.org/10.1029/WR023i003p00467
      Walter, A. L., Frind, E. O., Blowes, D. W., et al., 1994. Modeling of Multicomponent Reactive Transport in Groundwater: 2. Metal Mobility in Aquifers Impacted by Acidic Mine Tailings Discharge. Water Resources Research, 30(11): 3149-3158. https://doi.org/10.1029/94WR00954
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519(in Chinese with English abstract).
      White, A. F., Brantley, S. L., 2003. The Effect of Time on the Weathering of Silicate Minerals: Why do Weathering Rates Differ in the Laboratory and Field? Chemical Geology, 202(3): 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001
      Wilson, C. R., Witherspoon, P. A., Long, J. C. S., et al., 1983. Large-Scale Hydraulic Conductivity Measurements in Fractured Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6): 269-276. https://doi.org/10.1016/0148-9062(83)90596-X
      Yang, B., Wang, H., Wang, B., et al., 2021. Digital Quantification of Fracture in Full-Scale Rock Using Micro-CT Images: A Fracturing Experiment with N2 and CO2. Journal of Petroleum Science and Engineering, 196: 107682. https://doi.org/10.1016/j.petrol.2020.107682
      Zhong, Q. M., Chen, J. S., Chen, L., 2006. Symmetry Certification of Permea Bility Tensor and Derivation of Principal Permea Bility of Fractured Rock Mass. Chinese Journal of Rock Mechanics And Engineering, (S1): 2997-3002(in Chinese with English abstract).
      Zimmerman, R. W., Yeo, I. W., 2000. Fluid Flow in Rock Fractures: From the Navier-Stokes Equations to the Cubic Law. Dynamics of Fluids in Fractured Rock: 213-224. https://doi.org/10.1029/GM122p0213
      陈宏峰, 张发旺, 何愿, 等, 2016. 地质与地貌条件对岩溶系统的控制与指示. 水文地质工程地质, 43(5): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605006.htm
      甘磊, 马洪影, 沈振中, 2021. 下凹形态裂隙面粗糙程度表征及立方定律修正系数拟合. 水利学报, 52(4): 420-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202104005.htm
      梁敏, 2010. 基于Fluent的粗糙单裂隙水流数值模拟研究(硕士学位论文). 合肥: 合肥工业大学.
      李一鸣, 文章, 2020. 非达西裂隙流对渗透性基岩中流场及溶质羽的影响. 地球科学, 45(2): 693-700. doi: 10.3799/dqkx.2018.345
      王伟, 付豪, 邢林啸, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      钟启明, 陈建生, 陈亮, 2006. 裂隙岩体渗透张量的对称性证明及主渗透性推导. 岩石力学与工程学报, (S1): 2997-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1060.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(5)

      Article views (468) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return