• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 12
    Dec.  2022
    Turn off MathJax
    Article Contents
    Chai Bo, Shi Xushan, Du Juan, Wang Wei, Qian Wei, 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646. doi: 10.3799/dqkx.2022.108
    Citation: Chai Bo, Shi Xushan, Du Juan, Wang Wei, Qian Wei, 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646. doi: 10.3799/dqkx.2022.108

    How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea

    doi: 10.3799/dqkx.2022.108
    • Received Date: 2022-01-24
      Available Online: 2023-01-10
    • Publish Date: 2022-12-25
    • Earth evolution, groundwater system, rock engineering and geohazards are related to rock mass structures of different scales. Due to the data deficiency on the structure of underground rock mass, it is a significant challenge to realize the regional elaborated analysis of rock mass structure. Based on the summary of research progress of multiscale rock mass structure investigation, in this study it lists the problems in the elaborated multiscale analysis of rock mass structure. Applying the theory of earth system science, the ideas and technical solutions for these problems are proposed. Rock mass structure is closely related to the evolution process and surrounding environment (pressure-temperature-time, PTt). It is necessary to explore the co-evolution mechanism of discontinuities on different scales and the elaborated analysis theory of multiscale rock mass structure from the perspective of system science. This study combines earth system science with modern survey, experiment, and simulation of rock mass, and proposes a multiscale research approach of rock mass structure combining "PTt -mechanical model-menergy dissipation-discontinuities". The approach is expected to realize the regional elaborated analysis of rock mass structure.

       

    • loading
    • Agliardi, F., Riva, F., Barbarano, M., et al., 2019. Effects of Tectonic Structures and Long-Term Seismicity on Paraglacial Giant Slope Deformations: Piz Dora (Switzerland). Engineering Geology, 263: 105353. https://doi.org/10.1016/j.enggeo.2019.105353
      Assali, P., Grussenmeyer, P., Villemin, T., et al., 2014. Surveying and Modeling of Rock Discontinuities by Terrestrial Laser Scanning and Photogrammetry: Semi-Automatic Approaches for Linear Outcrop Inspection. Journal of Structural Geology, 66: 102-114. https://doi.org/10.1016/j.jsg.2014.05.014
      Barton, N., 1973. Review of a New Shear-Strength Criterion for Rock Joints. Engineering Geology, 7(4): 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
      Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
      Bons, P. D., Elburg, M. A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology, 43: 33-62. https://doi.org/10.1016/j.jsg.2012.07.005
      Boyd, D. L., Walton, G., Trainor-Guitton, W., 2019. Quantifying Spatial Uncertainty in Rock through Geostatistical Integration of Borehole Data and a Geologist's Cross-Section. Engineering Geology, 260: 105246. https://doi.org/10.1016/j.enggeo.2019.105246
      Buyer, A., Aichinger, S., Schubert, W., 2020. Applying Photogrammetry and Semi-Automated Joint Mapping for Rock Mass Characterization. Engineering Geology, 264: 105332. https://doi.org/10.1016/j.enggeo.2019.105332
      Celestino, M. A. L., de Miranda, T. S., Mariano, G., et al., 2020. Fault Damage Zones Width: Implications for the Tectonic Evolution of the Northern Border of the Araripe Basin, Brazil, NE Brazil. Journal of Structural Geology, 138: 104116. https://doi.org/10.1016/j.jsg.2020.104116
      Chai, B., Tao, Y. Y., Du, J., et al., 2020. Energetics Parameter Estimation of Jointed Rock Mass Based on Hoek-Brown Failure Criterion. Bulletin of Geological Science and Technology, 39(1): 78-85(in Chinese with English abstract).
      Chang, X., Zhao, H. B., Cheng, L., 2020. Fracture Propagation and Coalescence at Bedding Plane in Layered Rocks. Journal of Structural Geology, 141: 104213. https://doi.org/10.1016/j.jsg.2020.104213
      Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three-Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361(in Chinese with English abstract).
      Dong, Y. H., Song, F., Zhou, P. P., et al., 2018. Development of the Granite Microcracks in Bayannuoergong, Alxa, Inner Mongolia. Journal of Engineering Geology, 26(3): 572-582(in Chinese with English abstract).
      Dutta, D., Mukherjee, S., 2019. Opposite Shear Senses: Geneses, Global Occurrences, Numerical Simulations and a Case Study from the Indian Western Himalaya. Journal of Structural Geology, 126: 357-392. https://doi.org/10.1016/j.jsg.2019.05.008
      Evans, M. A., Fischer, M. P., 2012. On the Distribution of Fluids in Folds: A Review of Controlling Factors and Processes. Journal of Structural Geology, 44: 2-24. https://doi.org/10.1016/j.jsg.2012.08.003
      Feng, J. W., Shi, S., Zhou, Z. H., et al., 2019. Characterizing the Influence of Interlayers on the Development and Distribution of Fractures in Deep Tight Sandstones Using Finite Element Method. Journal of Structural Geology, 123: 81-95. https://doi.org/10.1016/j.jsg.2019.03.009
      Filippi, M., Bruthans, J., Řihošek, J., et al., 2018. Arcades: Products of Stress-Controlled and Discontinuity-Related Weathering. Earth-Science Reviews, 180: 159-184. https://doi.org/10.1016/j.earscirev.2018.03.012
      Furuki, H., Chigira, M., 2019. Structural Features and the Evolutionary Mechanisms of the Basal Shear Zone of a Rockslide. Engineering Geology, 260: 105214. doi: 10.1016/j.enggeo.2019.105214
      Ge, Y. F., Tang, H. M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592(in Chinese with English abstract).
      Goudie, A. S., 2016. Quantification of Rock Control in Geomorphology. Earth-Science Reviews, 159: 374-387. https://doi.org/10.1016/j.earscirev.2016.06.012
      Gu, D. Z., 1979. Rock Mass Engineering Geomechanics Foundation. Science Press, Beijing, 230-243(in Chinese).
      Guo, C. B., Du, Y. B., Zhang, Y. S., et al., 2015. Geohazard Effects of the Xianshuihe Fault and Characteristics of Typical Landslides in Western Sichuan. Geological Bulletin of China, 34(1): 121-134 (in Chinese with English abstract).
      Han, S., Li, M. C., Wang, G., 2020. Copula-Based Simulating and Analyzing Methods of Rock Mass Fractures. Computers and Geotechnics, 127: 103779. https://doi.org/10.1016/j.compgeo.2020.103779
      Hoek, E., Brown, E. T., 2019. The Hoek-Brown Failure Criterion and GSI - 2018 Edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3): 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001
      Huang, L. C., Baud, P., Cordonnier, B., et al., 2019. Synchrotron X-Ray Imaging in 4D: Multiscale Failure and Compaction Localization in Triaxially Compressed Porous Limestone. Earth and Planetary Science Letters, 528: 115831. https://doi.org/10.1016/j.epsl.2019.115831
      Huang, R. Q., Qi, S. W., 2017. Engineering Geology: Review and Prospect of Past Ten Years in China. Journal of Engineering Geology, 25(2): 257-276(in Chinese with English abstract).
      Huang, R. Q., Xu, M., Chen, J. P., et al., 2004. Fine Description of Complex Rock Mass Structure and Its Engineering Application. Science Press, Beijing, 66-83 (in Chinese).
      Hudleston, P. J., Treagus, S. H., 2010. Information from Folds: A Review. Journal of Structural Geology, 32(12): 2042-2071. https://doi.org/10.1016/j.jsg.2010.08.011
      Huo, L., Wang, G. B., Yang, C. H., et al., 2019. Geometric Characteristics of Multi-Scale Discontinuities of Shazaoyuan Granite Masses in Beishan. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1848-1859(in Chinese with English abstract).
      Jaboyedoff, M., Penna, I., Pedrazzini, A., et al., 2013. An Introductory Review on Gravitational-Deformation Induced Structures, Fabrics and Modeling. Tectonophysics, 605: 1-12. https://doi.org/10.1016/j.tecto.2013.06.027
      Ju, Y., Ren, Z. Y., Zheng, J. T., et al., 2020. Quantitative Visualization Methods for Continuous Evolution of Three-Dimensional Discontinuous Structures and Stress Field in Subsurface Rock Mass Induced by Excavation and Construction——An Overview. Engineering Geology, 265: 105443. https://doi.org/10.1016/j.enggeo.2019.105443
      Kruhl, J. H., 2013. Fractal-Geometry Techniques in the Quantification of Complex Rock Structures: A Special View on Scaling Regimes, Inhomogeneity and Anisotropy. Journal of Structural Geology, 46: 2-21. https://doi.org/10.1016/j.jsg.2012.10.002
      Lan, H. X., Zhang, Y. X., Wu, Y. M., 2019. Effect of Rock Mass Structure on the Dynamics of Long Runout Landslide. Journal of Engineering Geology, 27(1): 108-122(in Chinese with English abstract).
      Le, Q. L., Wang, H. D., Gao, Y. L., et al., 2015. An Analysis of Disaster-Pregnant Geological Environment Conditions of the Wangxia Unstable Rock Mass in the Three Gorges Reservoir. Acta Geoscientica Sinica, 36(2): 204-212(in Chinese with English abstract).
      Lei, G. W., Yang, C. H., Wang, G. B., et al., 2016. The Development Law and Mechanical Causes of Fault Influenced Zone. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241(in Chinese with English abstract).
      Lempp, C., Menezes, F. F., Schöner, A., 2020. Evolution of Shear Bands and Cracks in Multi-Stage Triaxial Tests with Water-Saturated Sandstone: A Study of Micro-Tectonics with a Fractal Perspective. Journal of Structural Geology, 138: 104092. https://doi.org/10.1016/j.jsg.2020.104092
      Li, H., Lin, C. Y., Ren, L. H., et al., 2020. An Integrated Quantitative Modeling Approach for Fault-Related Fractures in Tight Sandstone Reservoirs. Journal of Petroleum Science and Engineering, 194: 107552. https://doi.org/10.1016/j.petrol.2020.107552
      Li, M. C., Zhang, Y., Zhou, S. B., 2018. Stability Analysis of Stochastic Rock Blocks Based on Three-Dimensional Fracture Network Rock Mass Structure Model. Journal of Tianjin University (Science and Technology), 51(4): 331-338(in Chinese with English abstract).
      Li, S. C., Liu, B., Xu, X. J., et al., 2017. An Overview of ahead Geological Prospecting in Tunneling. Tunnelling and Underground Space Technology, 63: 69-94. https://doi.org/10.1016/j.tust.2016.12.011
      Li, T. F., Pan, M., Liu, R. X., 2002. Analysis of the Modes of Rock Mass Structure on Slope Stability. Acta Scicentiarum Naturalum Universitis Pekinesis, 38(2): 239-244(in Chinese with English abstract).
      Li, X. J., Chen, Z. Y., Chen, J. Q., et al., 2019. Automatic Characterization of Rock Mass Discontinuities Using 3D Point Clouds. Engineering Geology, 259: 105131. https://doi.org/10.1016/j.enggeo.2019.05.008
      Liang, J., Cui, S. H., Pei, X. J., et al., 2021. Initiation Mechanism of Earthquake-Induced Large Landslides Considering Structural Damage. Chinese Journal of Geotechnical Engineering, 43(6): 1039-1049(in Chinese with English abstract).
      Liang, K., Xie, L. Z., He, B., et al., 2021. Effects of Grain Size Distributions on the Macro-Mechanical Behavior of Rock Salt Using Micro-Based Multiscale Methods. International Journal of Rock Mechanics and Mining Sciences, 138: 104592. https://doi.org/10.1016/j.ijrmms.2020.104592
      Lisjak, A., Grasselli, G., 2014. A Review of Discrete Modeling Techniques for Fracturing Processes in Discontinuous Rock Masses. Journal of Rock Mechanics and Geotechnical Engineering, 6(4): 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007
      Liu, X. L., Han, G. F., Wang, E. Z., et al., 2018. Multiscale Hierarchical Analysis of Rock Mass and Prediction of Its Mechanical and Hydraulic Properties. Journal of Rock Mechanics and Geotechnical Engineering, 10(4): 694-702. https://doi.org/10.1016/j.jrmge.2018.04.003
      Liu, Y. R., Tang, H. M., 2009. Rock Mass Mechanics. Chemical Industry Press, Beijing, 14-15 (in Chinese).
      Matsuura, Y., Hayano, A., Itakura, K., et al., 2019. Estimation of Planes of a Rock Mass in a Gallery Wall from Point Cloud Data Based on MD PSO. Applied Soft Computing, 84: 105737. https://doi.org/10.1016/j.asoc.2019.105737
      Morley, C. K., von Hagke, C., Hansberry, R., et al., 2018. Review of Major Shale-Dominated Detachment and Thrust Characteristics in the Diagenetic Zone: Part II, Rock Mechanics and Microscopic Scale. Earth-Science Reviews, 176: 19-50. https://doi.org/10.1016/j.earscirev.2017.09.015
      Nevitt, J. M., Warren, J. M., Kumamoto, K. M., et al., 2019. Using Geologic Structures to Constrain Constitutive Laws not Accessible in the Laboratory. Journal of Structural Geology, 125: 55-63. https://doi.org/10.1016/j.jsg.2018.06.006
      Pan, J. Z., 1980. Sliding Stability and Landslide Analysis of Buildings. China Water Power Press, Beijing (in Chinese).
      Pedrazzini, A., Jaboyedoff, M., Loye, A., et al., 2013. From Deep Seated Slope Deformation to Rock Avalanche: Destabilization and Transportation Models of the Sierre Landslide (Switzerland). Tectonophysics, 605: 149-168. https://doi.org/10.1016/j.tecto.2013.04.016
      Peng, J. B., Ma, R. Y., Shao, T. Q., 2004. Basic Relation between Structural Geology and Engineering Geology. Earth Science Frontiers, 11(4): 535-549(in Chinese with English abstract).
      Peng, W., Jiang, Y. X., 2006. Mechanical Properties of Barton's Empirical Method for Shear Strength of Rock Mass Structural Discontinuities. In: Sun, Y. F., ed., Collection of Academic Papers on China Communications Civil Engineering. Xi'an Jiaotong University Press, Xi'an, 903-906(in Chinese).
      Qiao, J. P., 2002. Structure and Shape of Landslide. Chinese Journal of Rock Mechanics and Engineering, 21(9): 1355-1358(in Chinese with English abstract).
      Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052
      Shang, J., West, L. J., Hencher, S. R., et al., 2018. Geological Discontinuity Persistence: Implications and Quantification. Engineering Geology, 241: 41-54. https://doi.org/10.1016/j.enggeo.2018.05.010
      Shang, Y. J., Chen, M. X., Wang, K. Y., et al., 2013. Application Comparison of Engineering Geological Rock Group and Rock Mass Classification in Rock Engineering. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3205-3214 (in Chinese with English abstract).
      Shirole, D., Walton, G., Hedayat, A., 2020. Experimental Investigation of Multi-Scale Strain-Field Heterogeneity in Rocks. International Journal of Rock Mechanics and Mining Sciences, 127: 104212. https://doi.org/10.1016/j.ijrmms.2020.104212
      Stead, D., Wolter, A., 2015. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. Journal of Structural Geology, 74: 1-23. https://doi.org/10.1016/j.jsg.2015.02.002
      Sun, G. Z., 1993. On the Theory of Structure-Controlled Rockmass. Journal of Engineering Geology, 1(1): 14-18(in Chinese with English abstract).
      Sun, Y. K., 2003. Discussion on the Development and Innovation of Engineering Geology (Ⅵ): Preliminary Discussion on Engineering Geology Model. Geological Exploration for Non-Ferrous Metals, (2): 27-28, 34(in Chinese).
      Wang, C. S., Wang, L. Q., Karakus, M., 2019. A New Spectral Analysis Method for Determining the Joint Roughness Coefficient of Rock Joints. International Journal of Rock Mechanics and Mining Sciences, 113: 72-82. https://doi.org/10.1016/j.ijrmms.2018.11.009
      Weidinger, J. T., 2006. Predesign, Failure and Displacement Mechanisms of Large Rockslides in the Annapurna Himalayas, Nepal. Engineering Geology, 83(1-3): 201-216. https://doi.org/10.1016/j.enggeo.2005.06.032
      West, N., Kirby, E., Nyblade, A. A., et al., 2019. Climate Preconditions the Critical Zone: Elucidating the Role of Subsurface Fractures in the Evolution of Asymmetric Topography. Earth and Planetary Science Letters, 513: 197-205. doi: 10.1016/j.epsl.2019.01.039
      Wu, A. Q., Fan, L., Zhong, Z. W., et al., 2020. Development of an In-Situ Hydro-Mechanical Coupling True Triaxial Test System for Fractured Rock Mass and Its Application. Chinese Journal of Rock Mechanics and Engineering, 39(11): 2161-2171(in Chinese with English abstract).
      Wu, F. Q., 2004. Engineering Geology Assessment Procedure for Deformation and Stability of High Steep Rock Slopes. Journal of Engineering Geology, (Suppl. 1): 199-211 (in Chinese with English abstract).
      Wu, F. Q., Qi, S. W., 2017. Summary of the 10th Congress of Engineering Geology of China. Journal of Engineering Geology, 25(1): 246-256 (in Chinese with English abstract).
      Wu, F. Q., Wu, J., Bao, H., et al., 2021. Advances in Statistical Mechanics of Rock Masses and Its Engineering Applications. Journal of Rock Mechanics and Geotechnical Engineering, 13(1): 22-45. https://doi.org/10.1016/j.jrmge.2020.11.003
      Xia, L., Xie, J., Yu, Q. C., 2019. Influence of Statistical Distribution Dispersion in the Fracture Size on Blockiness REV of Fractured Rock Masses. Hydrogeology & Engineering Geology, 46(4): 112-118 (in Chinese with English abstract).
      Xia, Y. J., Zhang, C. Q., Zhou, H., et al., 2020. Mechanical Behavior of Structurally Reconstructed Irregular Columnar Jointed Rock Mass Using 3D Printing. Engineering Geology, 268: 105509. https://doi.org/10.1016/j.enggeo.2020.105509
      Xing, W. Z., Wang, S., Fan, P. X., et al., 2021. Experimental Study on Direct Shear Behavior of Split Rock Joints. Journal of Central South University (Science and Technology), 52(8): 2933-2944(in Chinese with English abstract).
      Xu, L., Chen, N. C., Chen, Z. Q., et al., 2021. Spatiotemporal Forecasting in Earth System Science: Methods, Uncertainties, Predictability and Future Directions. Earth-Science Reviews, 222: 103828. https://doi.org/10.1016/j.earscirev.2021.103828
      Yin, H. M., Zhang, Y. H., Kong, X. H., 2011. Estimation of Joint Shear Strength Based on Fractal Method. Hydrogeology & Engineering Geology, 38(4): 58-62(in Chinese with English abstract).
      Yin, Y. P., 2005. Human-Cutting Slope Structure and Failure Pattern at the Three Gorges Reservoir. Journal of Engineering Geology, 13(2): 145-154 (in Chinese with English abstract).
      Yu, W. J., Gao, Q., Jin, X. Q., et al., 2013. Field Investigation and Mechanics Characteristics Analysis of Deep Rock Mass Affected by Fault Structure. Progress in Geophysics, 28(1): 488-497(in Chinese with English abstract).
      Zhang, K., Wu, F. Q., Sha, P., et al., 2019. Geological Cataloging Method with Oblique Photography of Uav for Open-Pit Slope and Its Application. Journal of Engineering Geology, 27(6): 1448-1455 (in Chinese with English abstract).
      Zhang, Y., Wong, L. N. Y., 2018. A Review of Numerical Techniques Approaching Microstructures of Crystalline Rocks. Computers and Geosciences, 115: 167-187. https://doi.org/10.1016/j.cageo.2018.03.012
      Zhang, Y. S., Ba, R. J., Ren, S. S., et al., 2020. An Analysis of Geo-Mechanism of the Baige Landslide in Jinsha River, Tibet. Geology in China, 47(6): 1637-1645(in Chinese with English abstract).
      Zhao, J., 1997. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion. International Journal of Rock Mechanics and Mining Sciences, 34(2): 179-185. https://doi.org/10.1016/s0148-9062(96)00063-0
      柴波, 陶阳阳, 杜娟, 等, 2020. 基于Hoek-Brown准则的节理岩体能量参数估算. 地质科技通报, 39(1): 78-85.
      陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282
      董艳辉, 宋凡, 周鹏鹏, 等, 2018. 巴彦诺日公地段花岗岩微裂隙发育特征研究. 工程地质学报, 26(3): 572-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803002.htm
      葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117
      谷德振, 1979. 岩体工程地质力学基础. 北京: 科学出版社. 230-243.
      郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理. 地质通报, 34(1): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501010.htm
      黄润秋, 祁生文, 2017. 工程地质: 十年回顾与展望. 工程地质学报, 25(2): 257-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702001.htm
      黄润秋, 许模, 陈剑平, 等, 2004. 复杂岩体结构精细描述及其工程应用. 北京: 科学出版社, 66-83.
      霍亮, 王贵宾, 杨春和, 等, 2019. 北山沙枣园花岗岩岩体不同尺度结构面几何特征研究. 岩石力学与工程学报, 38(9): 1848-1859. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909013.htm
      兰恒星, 仉义星, 伍宇明, 2019. 岩体结构效应与长远程滑坡动力学. 工程地质学报, 27(1): 108-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901012.htm
      乐琪浪, 王洪德, 高幼龙, 等, 2015. 三峡库区望霞危岩体孕灾地质环境条件分析. 地球学报, 36(2): 204-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502010.htm
      雷光伟, 杨春和, 王贵宾, 等, 2016. 断层影响带的发育规律及其力学成因. 岩石力学与工程学报, 35(2): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602004.htm
      李明超, 张野, 周四宝, 2018. 基于岩体三维裂隙网络模型的随机块体稳定分析. 天津大学学报(自然科学与工程技术版), 51(4): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201804001.htm
      李铁锋, 潘懋, 刘瑞珣, 2002. 基岩斜坡变形与破坏的岩体结构模式分析. 北京大学学报(自然科学版), 38(2): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200202019.htm
      梁靖, 崔圣华, 裴向军, 等, 2021. 考虑岩体构造损伤的强震大型滑坡启动成因. 岩土工程学报, 43(6): 1039-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106011.htm
      刘佑荣, 唐辉明, 2009. 岩体力学. 北京: 化学工业出版社, 14-15. https://cdmd.cnki.com.cn/Article/CDMD-11415-1015391330.htm
      潘家铮, 1980. 建筑物的抗滑稳定和滑坡分析. 北京: 水利出版社.
      彭建兵, 马润勇, 邵铁全, 2004. 构造地质与工程地质的基本关系. 地学前缘, 11(4): 535-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404029.htm
      彭卫, 蒋云昕, 2006. 岩体结构面抗剪强度Barton经验估算方法的力学特性. 见: 孙永福编, 中国交通土建工程学术论文集. 西安: 西安交通大学出版社, 903-906.
      乔建平, 2002. 滑坡体结构与坡形. 岩石力学与工程学报, 21(9): 1355-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209016.htm
      尚彦军, 陈明星, 王开洋, 等, 2013. 工程地质岩组与岩体质量分级在岩石工程中应用对比. 岩石力学与工程学报, 32(增刊2): 3205-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2029.htm
      孙广忠, 1993. 论"岩体结构控制论". 工程地质学报, 1(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ199301003.htm
      孙玉科, 2003. 工程地质学发展与创新思路探讨之六: 《工程地质模型》初论. 岩土工程界, (2): 27-28, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200302030.htm
      邬爱清, 范雷, 钟作武, 等, 2020. 现场裂隙岩体水力耦合真三轴试验系统研制与应用. 岩石力学与工程学报, 39(11): 2161-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011001.htm
      伍法权, 2004. 岩质高陡边坡变形与稳定性评价工程地质工作方法. 工程地质学报, (增刊1): 199-211. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200400001041.htm
      伍法权, 祁生文, 2017. 第10届全国工程地质大会学术总结. 工程地质学报, 25(1): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701032.htm
      夏露, 谢娟, 于青春, 2019. 裂隙延展性统计分布离散性对岩体块体化程度REV的影响. 水文地质工程地质, 46(4): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904016.htm
      邢文政, 王硕, 范鹏贤, 等, 2021. 劈裂岩体结构面直接剪切试验研究. 中南大学学报(自然科学版), 52(8): 2933-2944 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108037.htm
      尹红梅, 张宜虎, 孔祥辉, 2011. 结构面剪切强度参数三维分形估算. 水文地质工程地质, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201104012.htm
      殷跃平, 2005. 三峡库区边坡结构及失稳模式研究. 工程地质学报, 13(2): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200502000.htm
      余伟健, 高谦, 靳学奇, 等, 2013. 受断层构造影响的深部岩体现场调查及力学特征分析. 地球物理学进展, 28(1): 488-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201301055.htm
      张恺, 伍法权, 沙鹏, 等, 2019. 基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用. 工程地质学报, 27(6): 1448-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906027.htm
      张永双, 巴仁基, 任三绍, 等, 2020. 中国西藏金沙江白格滑坡的地质成因分析. 中国地质, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(5)

      Article views (825) PDF downloads(113) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return