• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Jin Bijing, Yin Kunlong, Gui Lei, Zhao Binbin, Guo Baorui, Zeng Taorui, 2024. Susceptibility Assessment of Land Subsidence of Transmission Line Towers in the Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, 49(2): 538-549. doi: 10.3799/dqkx.2022.109
    Citation: Jin Bijing, Yin Kunlong, Gui Lei, Zhao Binbin, Guo Baorui, Zeng Taorui, 2024. Susceptibility Assessment of Land Subsidence of Transmission Line Towers in the Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, 49(2): 538-549. doi: 10.3799/dqkx.2022.109

    Susceptibility Assessment of Land Subsidence of Transmission Line Towers in the Salt Lake Area Based on Remote Sensing Interpretation

    doi: 10.3799/dqkx.2022.109
    • Received Date: 2022-11-25
    • Publish Date: 2024-02-25
    • The 750 kV Chaiyu transmission line across the Qarhan Salt Lake area is an important part of the energy transportation channel in the western part of the country. Affected by the special geological environment and human activities in the salt lake area, some tower foundations have uneven settlement, which seriously threatens the safe operation of the transmission line. Aiming at the problem of deformation and failure of tower foundation in salt lake area, small baseline integrated aperture radar interferometry (SBAS-InSAR) technology was used to carry out remote sensing interpretation of Sentinel 1A data in 2018 before the deformation and instability of tower foundation, and the distribution of ground subsidence in salt lake area was obtained. Based on the frequency ratio method, eight evaluation factors with strong correlation with land subsidence were selected to construct the evaluation index system of land subsidence susceptibility in the salt lake region. The multi-layer perceptron neural network(MLPNN), logical regression(LR) and Bayesian network(BN) were used to compare and analyze the evaluation effect and accuracy of land subsidence susceptibility in the salt lake region. The evaluation results show that the evaluation accuracy of MLPNN, LR and BN is high, which are 0.85, 0.84 and 0.82, respectively. This shows that the method of combining the sample data of land subsidence obtained by remote sensing interpretation with machine learning is an effective means for evaluating the susceptibility of ground subsidence of transmission line towers in the salt lake region. At the same time, the evaluation results can provide reference for transmission line tower monitoring, operation management and new tower location.

       

    • loading
    • Atkinson, P. M., Massari, R., 2011. Autologistic Modelling of Susceptibility to Landsliding in the Central Apennines, Italy. Geomorphology, 130(1/2): 55-64. https://doi.org/10.1016/j.geomorph.2011.02.001
      Bianchini, Solari, Soldato, et al., 2019. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sensing, 11(17): 2015. https://doi.org/10.3390/rs11172015
      Buscema, M., 2002. A Brief Overview and Introduction to Artificial Neural Networks. Substance Use & Misuse, 37(8/9/10): 1093-1148. https://doi.org/10.1081/ja-120004171
      Chen, G., Zhang, Y., Zeng, R. Q., et al., 2018. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District. Remote Sensing, 10(2): 270. https://doi.org/10.3390/rs10020270
      Du, Q., Li, G., Zhou, Y., et al., 2021. Deformation Monitoring in an Alpine Mining Area in the Tianshan Mountains Based on SBAS-InSAR Technology. Advances in Materials Science and Engineering, 2021(12): 1-15. https://doi.org/10.1155/2021/9988017
      Fadhillah, M. F., Achmad, A. R., Lee, C. W., 2020. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sensing, 12(21): 3505. https://doi.org/10.3390/rs12213505
      Fergason, K. C., Rucker, M. L., Panda, B. B., 2015. Methods for Monitoring Land Subsidence and Earth Fissures in the Western USA. Proceedings of the International Association of Hydrological Sciences, 372: 361-366. https://doi.org/10.5194/piahs-372-361-2015
      Gao, X. X., Li, S. M., Chen, P. D., et al., 2022. Research on Instability Mechanism of Transmission Tower under Time-Series In SAR Slope Slip Monitoring. Journal of Guizhou University(Natural Sciences), 39(1): 43-50 (in Chinese with English abstract).
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract).
      Hakim, W., Achmad, A., Lee, C. W., 2020. Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data. Remote Sensing, 12(21): 3627. https://doi.org/10.3390/rs12213627
      Han, L. N., Zhang, J. Q., Zhang, Y. C., et al., 2019. Applying a Series and Parallel Model and a Bayesian Networks Model to Produce Disaster Chain Susceptibility Maps in the Changbai Mountain Area, China. Water, 11(10): 2144. https://doi.org/10.3390/w11102144
      He, S. W., Pan, P., Dai, L., et al., 2012. Application of Kernel-Based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China. Geomorphology, 171-172(6): 30-41. https://doi.org/10.1016/j.geomorph.2012.04.024
      Holzer, T. L., Galloway, D. L., 2005. Impacts of Land Subsidence Caused by Withdrawal of Underground Fluids in the United States. Humans as Geologic Agents, 4016(8). https://doi.org/10.1130/2005.4016(8)
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different AttributeInterval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Ilia, I., Tsangaratos, P., 2016. Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides, 13(2): 379-397. https://doi.org/10.1007/s10346-015-0576-3
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under DifferentEnvironmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Luo, Y. D., 2010. Distribution Law of Saline Soil and Its Salt Expansion and Subsidence Mechanism in Qinghai. Hydrogeological Engineering Geology, 37 (4): 116-120 (in Chinese).
      Mohammady, M., Pourghasemi, H. R., Amiri, M., 2019. Land Subsidence Susceptibility Assessment Using Random Forest Machine Learning Algorithm. Environmental Earth Sciences, 78(16): https://doi.org/10.1007/s12665-019-8518-3
      Moreira, A., Prats-Iraola, P., Younis, M., et al., 2013. A Tutorial on Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43. https://doi.org/10.1109/mgrs.2013.2248301
      Ning, Z. W., 2014. Study on the Highway Foundation Settlement Regularity of Soft Soil Salinization in Yanhu Area (Dissertation). Chang' an University, Xi'an, 19-35 (in Chinese with English abstract).
      Qi, Z. X., Wang, X. J., Liu, C. Q., et al., 2021. Analysis on Collapsible Deformation and Prevention Measures of Transmission Line Tower Ground in Qarhan Salt Lake Area. Electric Power Survey and Design, (5): 72-76 (in Chinese with English abstract).
      Shi, M., Gong, H. L., Gao, M. L., et al., 2020. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sensing, 12(21): 3579. https://doi.org/10.3390/rs12213579
      Wang, Z, J., 1986. Engineering Geological Study of Ground Subsidence. Earth Science, (2): 199-206 (in Chinese).
      Wei, Z. Y., 2007. Harm of Qinghai Saline Soil to Power Transformation Engineering and Treatment Measure. Qinghai Electric Power, (S1): 40-44 (in Chinese with English abstract).
      Xiang, W., Zhang, R., Liu, G. X., et al., 2022. Extraction and Analysis of Saline Soil Deformation in the Qarhan Salt Lake Region (in Qinghai, China) by the Sentinel SBAS-InSAR Technique. Geodesy and Geodynamics, 13(2): 127-137. https://doi.org/10.1016/j.geog.2020.11.003
      Xu, Q., Pu, C. H., Zhao, K. Y., et al., 2021. Time Series InSAR Monitoring and Analysis of Spatiotemporal Evolution Characteristics of Land Subsidence in Yan'an New District. Geomatics and Information Science of Wuhan University, 46(7): 957-969 (in Chinese with English abstract)
      Yan, T, Z., 1989. New Model for Predicting Land Subsidence. Earth Science, (2): 181-188 (in Chinese).
      Zhang, Z. J., Wang, C., Wang, M. M., et al., 2018. Surface Deformation Monitoring in Zhengzhou City from 2014 to 2016 Using Time-Series InSAR. Remote Sensing, 10(11): 1731. https://doi.org/10.3390/rs10111731
      Zhang, Z. Y., Deng, M. G., Xu, S. G., 2022. Comparison of Landslide Susceptibility Assessment Models in Zhenkang County, Yunnan Province, China. Chinese Journal of Rock Mechanics and Engineering, 41(1): 157-171 (in Chinese with English abstract).
      Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
      Zhu, X, G., Ming, S., 2021. Application of Time Series In SAR Technology in Prevention and Control of Surface Deformation Disaster of High-Voltage Transmission line. Bulletin of Surveying and Mapping, (7): 92-97 (in Chinese with English abstract).
      高霞霞, 李素敏, 陈朋弟, 等, 2021. 时序InSAR边坡滑移监测下输电杆塔失稳机理研究. 贵州大学学报(自然科学版), 39(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI202201006.htm
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄发明, 舟叶, 池姚, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 12(45): 4535-4549. doi: 10.3799/dqkx.2020.247
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      罗友弟, 2010. 青海地区盐渍土分布规律及其盐胀溶陷机制探讨. 水文地质工程地质, 37(4): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201004027.htm
      宁展望, 2014. 盐湖区高速公路盐渍化软土地基沉降规律研究(硕士学位论文). 西安: 长安大学.
      祁兆鑫, 王新军, 刘常青, 等, 2021. 察尔汗盐湖区输电线路杆塔地基溶陷变形分析及防治措施. 电力勘测设计, (5): 72-76 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202105017.htm
      王智济, 1986. 地面沉降的工程地质研究. 地球科学, (2): 199-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198602013.htm
      魏占元, 2007. 青海盐渍土对变电工程的危害与治理措施. 青海电力, (S1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QHDL2007S1015.htm
      许强, 蒲川豪, 赵宽耀, 等, 2021. 延安新区地面沉降时空演化特征时序InSAR监测与分析. 武汉大学学报(信息科学版), 46(7): 957-969. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202107001.htm
      晏同珍, 1989. 地面沉降规律预测新模式. 地球科学, (2): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198902009.htm
      张钟远, 邓明国, 徐世光, 等, 2022. 镇康县滑坡易发性评价模型对比研究. 岩石力学与工程学报, 41(1): 157-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201013.htm
      周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
      祝昕刚, 明生, 2021. 时序InSAR技术应用于高压输电线路附近的地表形变灾害防控. 测绘通报, (7): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202107018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (739) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return