• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Zeng Renyu, Pan Jiayong, Su Hui, Gan Debin, Zhong Fujun, Du Houfa, Yan Jie, Zhang Chenguang, 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127
    Citation: Zeng Renyu, Pan Jiayong, Su Hui, Gan Debin, Zhong Fujun, Du Houfa, Yan Jie, Zhang Chenguang, 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127

    Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization

    doi: 10.3799/dqkx.2022.127
    • Received Date: 2022-03-06
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • The spatial and temporal distribution of Mesozoic mantle-derived magma in South China is closely related with the metallogenic model of the granite-type uranium deposit. However, it has always been an important yet difficult issue of studies to explain the origin of zircon in mantle-derived magma and clarify the emplacement age of mantle-derived magma. Focusing on a newly discovered mantle-derived pyroxene diorite in the Huichang area, southern Jiangxi Province, this paper presents a systematic study on its mineralogy, mineral geochemistry, chronology and bulk geochemistry. The Huichang pyroxene diorite is characterized by SiO2 contents of 55.74%-57.71%, and enrichment in LREE and LILE, and depletion in HREE and HFSE. Apatite belongs to fluoroapatite, and the intercept age (115±4.9 Ma) and weighted mean 206Pb/238U age (114.7±2.3 Ma) of apatite represent the crystallization age of Huichang pyroxene diorite. While, the zircons have 206Pb/238U age of 233-271 Ma and εHf(t) value of -3.0 to -1.4, which indicate the captured zircon from Ⅰ-type granite. Combined with the previous regional geological data, the South China block was mainly in a compression environment in the Indosinian, forming a large number of S-type and Ⅰ-type granites. In the Cretaceous, the South China block was mainly in an extensional environment, and multiple stages of mantle-derived magmas underplating events occurred. In the extensional environment, meteoric water and mantle-derived fluids brought sufficient mineralizers such as O2 and CO2, which provided important conditions for leaching uranium from source bed and finally forming the uranium deposits.

       

    • loading
    • Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D., et al., 2015. Distinguishing Primary and Secondary Inclusion Assemblages in Jack Hills Zircons. Lithos, 234-235: 15-26. https://doi.org/10.1016/j.lithos.2015.07.014
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Belousova, E. A., Jiménez, J. M. G., Graham, I., et al., 2015. The Enigma of Crustal Zircons in Upper-Mantle Rocks: Clues from the Tumut Ophiolite, Southeast Australia. Geology, 43(2): 119-122. https://doi.org/10.1130/g36231.1
      Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
      Burnham, A. D., Berry, A. J., 2017. Formation of Hadean Granites by Melting of Igneous Crust. Nature Geoscience, 10(6): 457-461. https://doi.org/10.1038/ngeo2942
      Cao, H. J., Huang, G. L., Xu, L. L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.07.005
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? : Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1-2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009
      Chen, H., Hu, R. Z., Bi, X. W., et al., 2012. Calcite Sm-Nd Isochron Age and Its Geological Significance of the 6722 Uranium Ore Deposit, Southern Jiangxi Province, China. Acta Mineralogica Sinica, 32(1): 52-59 (in Chinese with English abstract).
      Cochrane, R., Spikings, R. A., Chew, D., et al., 2014. High Temperature (> 350 ℃) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochimica et Cosmochimica Acta, 127: 39-56. https://doi.org/10.1016/j.gca.2013.11.028
      Deng, P., Ren, J. S., Ling, H. F., et al., 2012. SHRIMP Zircon U-Pb Ages and Tectonic Implications for Indosinian Granitoids of Southern Zhuguangshan Granitic Composite, South China. Chinese Science Bulletin, 57(13): 1542-1552. https://doi.org/10.1007/s11434-011-4951-8
      Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Developments in Geotectonics, 24: 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6.
      Gao, P., 2016. A Geochemical Study of Mesozoic Granites from the Nanling Range in South China (Dissertation). University of Science and Technoiogy of China, Hefei (in Chinese with English abstract).
      Harlov, D. E., 2015. Apatite: A Fingerprint for Metasomatic Processes. Elements, 11(3): 171-176. https://doi.org/10.2113/gselements.11.3.171
      He, Z. Y., Xu, X. S., Wang, X. L., et al., 2008. Geochronology and Geochemistry of Shoshonitic Volcanics in Southern Jiangxi Province. Acta Petrologica Sinica, 24(11): 2524-2536 (in Chinese with English abstract).
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, R. Z., Bi, X. W., Su, W. C., et al., 2004. The Relationship between Uranium Metallogenesis and Crustal Extension during the Cretaceous—Tertiary in South China. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2004.01.012
      Hughes, J. M., Rakovan, J., 2002. The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1-12. https://doi.org/10.2138/rmg.2002.48.1
      Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3
      Li, S. Z., Zang, Y. B., Wang, P. C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225 (in Chinese with English abstract).
      Li, W. R., Costa, F., 2020. A Thermodynamic Model for F-Cl-OH Partitioning between Silicate Melts and Apatite Including Non-Ideal Mixing with Application to Constraining Melt Volatile Budgets. Geochimica et Cosmochimica Acta, 269: 203-222. https://doi.org/10.1016/j.gca.2019.10.035
      Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, Se China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1997.02.004
      Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      Li, Z., Chen, B., 2014. Geochronology and Geochemistry of the Paleoproterozoic Meta-Basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 255: 653-667. https://doi.org/10.1016/j.precamres.2014.07.003
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      Liang, X. Q., Li, X. H., Qiu, Y. X., et al., 2005. Indosinian Collisional Orogeny: Evidence from Structural and Sedimentary Geology in Shiwandashan Basin, South China. Geotectonica et Metallogenia, 29(1): 99-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2005.01.014
      Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract).
      Ludwig, K. R., 2003. Isoplot/Ex, Version 3: A Geochronological Toolkit for Microsoft Excel. Geochronology Center Berkeley, Berkeley.
      Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016
      Mao, J. R., Takahashi, Y., Kee, W. S., et al., 2011. Characteristics and Geodynamic Evolution of Indosinian Magmatism in South China: A Case Study of the Guikeng Pluton. Lithos, 127(3-4): 535-551. https://doi.org/10.1016/j.lithos.2011.09.011
      Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022
      Menzies, M. A., 1989. Cratonic, Circumcratonic and Oceanic Mantle Domains Beneath the Western United States. Journal of Geophysical Research: Solid Earth, 94(B6): 7899-7915. https://doi.org/10.1029/JB094iB06p07899
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Min, M. Z., Luo, X. Z., Du, G. S., et al., 1999. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geology Reviews, 14(2): 105-127. https://doi.org/10.1016/S0169-1368(98)00020-1
      Müller, D., Rock, N. M. S., Groves, D. I., 1992. Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks in Different Tectonic Settings: A Pilot Study. Mineralogy and Petrology, 46(4): 259-289. https://doi.org/10.1007/BF01173568
      Niu, Y. L., Gilmore, T., Mackie, S., et al., 2002. Mineral Chemistry, Whole-Rock Compositions, and Petrogenesis of Leg 176 Gabbros: Data and Discussion. In: Natland, J. H., Dick, H. J. B., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.176.011.2002
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pochon, A., Poujol, M., Gloaguen, E., et al., 2016. U-Pb LA-ICP-MS Dating of Apatite in Mafic Rocks: Evidence for a Major Magmatic Event at the Devonian-Carboniferous Boundary in the Armorican Massif (France). American Mineralogist, 101(11): 2430-2442. https://doi.org/10.2138/am-2016-5736
      Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3-4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
      Qi, H. W., Hu, R. Z., 2000. Comparison between Uranium Ore-Forming Fluids and Magmatic Fluids of Granites, Southern China-A Preliminary Study. Acta Mineralogica Sinica, 20(4): 401-405 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2000.04.014
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Ren, H. T., Wu, J. Q., Ye, X. F., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.02.015
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Shaw, A., Downes, H., Thirlwall, M. F., 1993. The Quartz-Diorites of Limousin: Elemental and Isotopic Evidence for Devono-Carboniferous Subduction in the Hercynian Belt of the French Massif Central. Chemical Geology, 107(1-2): 1-18. https://doi.org/10.1016/0009-2541(93)90098-4
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003
      Shu, L. S., Zhou, X. M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249-260 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2002.03.004
      Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
      Sun, L. Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tan, Q. L., Wang, Y. J., Zhang, Y. Z., et al., 2017. Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen: Evidence for Early Neoproterozoic Oceanic Crust Subduction. Earth Science, 42(2): 173-190 (in Chinese with English abstract).
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Turner, S., Wilde, S., Wörner, G., et al., 2020. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nature Communications, 11: 1241. https://doi.org/10.1038/s41467-020-14857-1
      Wang, D. Z., 2004. The Study of Granitic Rocks in South China: Looking Back and Forward. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2004.03.001
      Wang, H. Z., Zhao, Y. D., Chen, P. R., et al., 2018. Petrogenesis of the Zhulanbu Composite Pluton and Its Implications for Tectonic Setting. Acta Petrologica et Mineralogica, 37(2): 175-196 (in Chinese with English abstract).
      Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, S- and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
      Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wu, H., Xia, Y., Zhou, K. K., et al., 2020. Highly Fractionated Granite Magmas Maybe the Main Uranium Source of Granite-Type Uranium Deposits in South China: Evidence from the Uranium Content of Zircon in Southern Zhuguangshan Granitic Composite. Acta Petrologica Sinica, 36(2): 589-600 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.16
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/BF03184122
      Xie, G. Q., 2003. Late Mesozoic and Cenozoic Mafic Dikes (Bodies) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics-A Case of Jiangxi Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      Xing, K., Shu, Q. H., 2021. Applications of Apatite in Study of Ore Deposits: A Review. Mineral Deposits, 40(2): 189-205 (in Chinese with English abstract).
      Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1-4): 97-114. https://doi.org/10.1016/j.precamres.2010.05.016
      Yu, J. H., Wang, L. J., Wang, X. L., et al., 2007. Geochemistry and Geochronology of the Fucheng Complex in the Southeastern Jiangxi Province, China. Acta Petrologica Sinica, 23(6): 1441-1456 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.020
      Zeng, L., Chen, Z. H., Sun, F. Y., et al., 2016. U-Pb Dating of Zircons and Ore-Bearing Potential of Zhulanbu Intrusions in the Southern Jiangxi Province. Rock and Mineral Analysis, 35(2): 199-207 (in Chinese with English abstract).
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2016. Geochemistry, Zircon U-Pb Dating and Hf Isotopies Composition of Paleozoic Granitoids in Jinchuan, NW China: Constraints on Their Petrogenesis, Source Characteristics and Tectonic Implication. Journal of Asian Earth Sciences, 121: 20-33. https://doi.org/10.1016/j.jseaes.2016.02.009
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2018. Paleoproterozoic Multiple Tectonothermal Events in the Longshoushan Area, Western North China Craton and Their Geological Implication: Evidence from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals, 8(9): 361. https://doi.org/10.3390/min8090361
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2021. Petrogenesis and Tectonic Significance of the Early Devonian Lamprophyres and Diorites in the Alxa Block, NW China. Geochemistry, 81(1): 125685. https://doi.org/10.1016/j.chemer.2020.125685
      Zeng, R. Y., Lai, J. Q., Zhang, L. J., 2016. Petrogenesis of Mafic Microgranular Enclaves: Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan. Earth Science, 41(9): 1461-1478 (in Chinese with English abstract).
      Zhang, B. T., Wu, J. Q., Ling, H. F., et al., 2008. Geochemical Evidence of Element and Sr-O-Nd-Pb Isotopes for Petrogenesis of the Huichang Early Cretaceous Shoshonite, Southern Jiangxi Province. Acta Geologica Sinica, 82(7): 986-997 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.07.017
      Zhang, C. G., Zeng, R. Y., Li, C. M., et al., 2021. Late Permian High-Ti Basalt in Western Guangxi, SW China and Its Link with the Emeishan Large Igneous Province: Geochronological and Geochemical Perspectives. Frontiers in Earth Science, 9: 729955. https://doi.org/10.3389/feart.2021.729955
      Zhang, G. S., Peng, R., Wen, H. J., et al., 2021. Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope. Earth Science, 46(12): 4230-4246 (in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112002
      Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
      Zhang, X. T., Pan, J. Y., Xia, F., et al., 2022. Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region. Earth Science, 47(1): 192-205 (in Chinese with English abstract).
      Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract).
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhong, F. J., Yan, J., Xia, F., et al., 2019. In-Situ U-Pb Isotope Geochronology of Uraninite for Changjiang Granite-Type Uranium Ore Field in Northern Guangdong, China: Implications for Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2727-2744 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.07
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201307006.htm
      陈恒, 胡瑞忠, 毕献武, 等, 2012. 赣南6722铀矿床方解石Sm-Nd等时线年龄及其地质意义. 矿物学报, 32(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201201009.htm
      高彭, 2016. 华南陆块南岭地区中生代花岗岩地球化学研究(博士学位论文). 合肥: 中国科学技术大学.
      贺振宇, 徐夕生, 王孝磊, 等, 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11): 2524-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811008.htm
      胡瑞忠, 毕献武, 苏文超, 等, 2004. 华南白垩‒第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401016.htm
      李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm
      梁新权, 李献华, 丘元禧, 等, 2005. 华南印支期碰撞造山: 十万大山盆地构造和沉积学证据. 大地构造与成矿学, 29(1): 99-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100D.htm
      凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm
      戚华文, 胡瑞忠, 2000. 华南花岗岩岩浆期后热液与铀成矿热液的初步对比. 矿物学报, 20(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200004013.htm
      任海涛, 吴俊奇, 叶锡芳, 等, 2013. 江西富城岩体西部过铝质细粒花岗岩锆石U-Pb年龄和地球化学特征. 高校地质学报, 19(2): 327-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302015.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      舒良树, 周新民, 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200203004.htm
      孙立强, 2018. 南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示(博士学位论文). 南京: 南京大学.
      谭清立, 王岳军, 张玉芝, 等, 2017. 江南东段平水地区桃红闪长岩: 早新元古代洋壳消减的证据. 地球科学, 42(2): 173-190. doi: 10.3799/dqkx.2017.014
      王德滋, 2004. 华南花岗岩研究的回顾与展望. 高校地质学报, 10(3): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403000.htm
      王洪作, 赵友东, 陈培荣, 等, 2018. 赣南珠兰埠复式岩体成因及其构造意义. 岩石矿物学杂志, 37(2): 175-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201802001.htm
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      伍皓, 夏彧, 周恳恳, 等, 2020. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源: 来自诸广山南体花岗岩锆石铀含量的证据. 岩石学报, 36(2): 589-600. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002016.htm
      谢桂青, 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例(博士学位论文). 贵阳: 中国科学院地球化学研究所.
      邢凯, 舒启海, 2021. 磷灰石在矿床学研究中的应用. 矿床地质, 40(2): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202102001.htm
      于津海, 王丽娟, 王孝磊, 等, 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6): 1441-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706019.htm
      曾乐, 陈郑辉, 孙丰月, 等, 2016. 赣南珠兰埠岩体锆石U-Pb年代学研究及其含矿性评价. 岩矿测试, 35(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602013.htm
      曾认宇, 赖健清, 张利军, 等, 2016. 湘中紫云山岩体暗色微粒包体的成因: 岩相学、全岩及矿物地球化学证据. 地球科学, 41(9): 1461-1478. doi: 10.3799/dqkx.2016.512
      章邦桐, 吴俊奇, 凌洪飞, 等, 2008. 会昌早白垩世橄榄玄粗岩(shoshonite)成因的元素及Sr-O-Nd-Pb同位素地球化学证据. 地质学报, 82(7): 986-997. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807019.htm
      张贵山, 彭仁, 温汉捷, 等, 2021. 闽西南E-MORB型基性岩墙成因: 来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062
      张笑天, 潘家永, 夏菲, 等, 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192-205. doi: 10.3799/dqkx.2021.046
      张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm
      钟福军, 严杰, 夏菲, 等, 2019. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义. 岩石学报, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
    • dqkxzx-48-9-3258-附表1-2.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (739) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return