• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Li Wei, Yue Dali, Li Jian, Liu Ruijing, Guo Changchun, Wang Wenfeng, Zhang Haina, 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132
    Citation: Li Wei, Yue Dali, Li Jian, Liu Ruijing, Guo Changchun, Wang Wenfeng, Zhang Haina, 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132

    Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin

    doi: 10.3799/dqkx.2022.132
    • Received Date: 2022-03-22
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • Most of the fluvial reservoirs have been in the late stage of oilfield development in China, and it is urgent to characterize their complex, internal sedimentary architectures. However, there are few published research documents related to differential architecture models and controlling factors, and there are not enough prediction models for oilfield reservoir architecture characterization. Therefore, taking the outcrop in Datong, Shanxi as the study area, the variable architecture models of fluvial reservoir are established by using the methods of outcrop description and measurement, GR measurement and particle size analysis. The results show that the outcrop area is divided into 9 short-term and 2 medium-term base-level cycles based on sandstone percent and ancient river depth, and the fluvial patterns at different locations of medium-term base-level cycle are obviously different. With the rising of the base level and the transition of fluvial type, architecture distribution changes from narrow and long braided bar to normal braided bar, then transitions to the combination style of narrow band braided bar or point bar, and finally evolves into horseshoe point bar. There is a good positive relationship between the thickness and width of sandy bars (braided bar or point bar), and between the width of sandy bar and the width of channel. The research results can provide guidance for similar outcrop architecture analysis and provide prediction models for the fine architecture characterization of similar oilfields.

       

    • loading
    • Bai, H., 2011. Mesozoic Prototype Basin Restoration in Datong Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Best, J. L., Ashworth, P. J., Bristow, C. S., et al., 2003. Three-Dimensional Sedimentary Architecture of a Large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4): 516-530. https://doi.org/10.1306/010603730516
      Bradley, R. W., Venditti, J. G., 2017. Revaluating Dune Scaling Relations. Earth-Science Reviews, 165: 356-376. https://doi.org/10.1016/j.earscirev.2016.11.004
      Bridge, J. S., Lunt, I. A., 2006. Depositional Models of Braided Rivers. In: Smith, G. H. S., Best, J. L., Bristow, C. S., et al., eds., Braided Rivers: Process, Deposits, Ecology and Management (1st Edition). Blackwell Publishing, Oxford, 11-50. https://doi.org/10.1002/9781444304374.ch2
      Chen, B. T., Yu, X. H., Wang, T. Q., et al., 2015. Lithofacies and Architectural Characteristics of Sandy Braided River Deposits: A Case from Outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province. Oil & Gas Geology, 36(1): 111-117 (in Chinese with English abstract).
      Chen, Y. K., Wu, S. H., Mao, P., et al., 2012. Characterization of Sandy Braided River Reservoir Configuration-An Example from Guantao Formation in Yangsanmu Oilfield, Dagang Oil Region. Xinjiang Petroleum Geology, 33(5): 523-526 (in Chinese with English abstract).
      Chen, Y. K., Wu, S. H., Wang, Y. J., et al., 2015. Distribution Patterns of the Fall-Siltseams in the Channel Bar of the Perennial Sandy Braided River: An Approach. Sedimentary Geology and Tethyan Geology, 35(1): 96-101, 112 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2015.01.012
      Chen, Y. X., Dai, D. L., 1962. Sedimentary Facies of Jurassic in Datong Area, Shanxi Province. Acta Geologica Sinica, 42(3): 321-336, 354 (in Chinese with English abstract).
      Colombera, L., Mountney, N. P., 2020. Accommodation and Sediment-Supply Controls on Clastic Parasequences: A Meta-Analysis. Sedimentology, 67: 1667-1709. https://doi.org/10.1111/set.12728
      Crosato, A., Mosselman, E., 2009. Simple Physics-Based Predictor for the Number of River Bars and the Transition between Meandering and Braiding. Water Resources Research, 45(3): 1-14. https://doi.org/10.1029/2008WRoo7242
      Cross, T. A., 1988. Controls on Coal Distribution in Transgressive-Regressive Cycles, Upper Cretaceous, Western Interior, U. S. A. . In: Wilgaus, C. K., Hastings, B. S., Posamentier, H., et al., eds., Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 42: 371-380. https://doi.org/10.2110/pec.88.01.0371
      Cross, T. A., 2000. Stratigraphic Controls on Reservoir Attributes in Continental Strata. Earth Science Frontiers, 7(4): 322-350.
      Deng, H. W., Wang, H. L., Li, X. M., et al., 1997. Application of Base Level Principle in Prediction of Lacustrine Reservoirs. Oil & Gas Geology, 18(2): 90-95, 114 (in Chinese with English abstract).
      Dou, L. R., Cheng, D. S., Li, M. W., et al., 2008. Unusual High Acidity Oils from the Great Palogue Field, Melut Basin, Sudan. Organic Geochemistry, 39(2): 210-231. https://doi.org/10.1016/j.orggeochem.2007.09.001
      Ghazi, S., Mountney, N. P., 2009. Facies and Architectural Element Analysis of a Meandering Fluvial Succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geology, 221: 99-126. https://doi.org/10.1016/j.sedgeo.2009.08.002
      Ghinassi, M., Ielpi, A., Aldinucci, M., et al., 2016. Downstream-Migrating Fluvial Point Bars in the Rock Record. Sedimentary Geology, 334: 66-96. https://doi.org/10.1016/j.sedgeo.2016.01.005
      Harbor, D. J., Schumm, S. A., Harvey, M. D., 1994. Tectonic Control of the Indus River in Sindh, Pakistan. In: Schumm, S. S., Winkley, B. R., et al., eds., The Variability of Large Alluvial Rivers (2st Edition). American Association of Civil Engineers Press, New York, 161-176.
      Ji, Z. Q., Ge, C. D., Zhou, M. Y., et al., 2020. Quartz-Hosted Fluid Inclusions Characteristics and Their Implications for Fluvial Deposits along the Changjiang River. Journal of Earth Science, 31(3): 571-581. https://doi.org/10.1007/s12583-020-1275-0
      Leclair, S. F., Bridge, J. S., 2001. Quantitative Interpretation of Sedimentary Structures Formed by River Dunes. Journal of Sedimentary Research, 71(5): 713-716. https://doi.org/10.1306/2DC40962-0E47-11D7-8643000102C1865D
      Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science, in Press (in Chinese with English abstract).
      Li, S. L., Yu, X. H., Chen, B. T., et al., 2015. Quantitative Characterization of Architecture Elements and Their Response to Base-Level Change in a Sandy Braided Fluvial System at a Mountain Front. Journal of Sedimentary Research, 85: 1258-1274. https://doi.org/10.2110/jsr.2015.82
      Li, W., Yue, D. L., Colombera, L., et al., 2020. A Novel Method for Estimating Sandbody Compaction in Fluvial Succcessions. Sedimentary Geology, 404: 105675. https://doi.org/10.1016/j.sedgeo.2020.105675
      Liang, H. W., Wu, S. H., Mu, L. X., et al., 2013. Base Level Cyclic Controls on the Fluvial Reservoir Physical Properties and Sonic Logging Response. Earth Science, 38(5): 1135-1142 (in Chinese with English abstract).
      Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493 (in Chinese with English abstract).
      Miall, A. D., 1985. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Science Reviews, 22: 261-308. https://doi.org/10.1016/0012-8252(85)90001-7
      Miall, A. D., 1988. Reservoir Heterogeneities in Fluvial Sandstones: Lesson from Outcrop Studies. AAPG Bulletin, 72(6): 682-697. https://doi.org/10.1306/703C8F01-1707-11D7-8645000102C1865D
      Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86(7): 1201-1216.
      Mueller, E. R., Pitlick, J., Pratt, M. J., 2014. Sediment Supply and Channel Morphology in Mountain River Systems: Single Thread to Braided Transitions. Journal of Geophysical Research: Earth Surface, 119: 1-26. https://doi.org/10.1002/2013JF003045
      Naseer, M. T., Asim, S., 2017. Detection of Cretaceous Incised-Valley Shale for Resource Play, Miano Gas Field, SW Pakistan: Spectral Decomposition Using Continuous Wavelet Transform. Journal of Asian Earth Sciences, 147: 358-377. https://doi.org/10.1016/j.jseaes.2017.07.031
      Qiu, Y. N., 1992. Developments in Reservoir Sedimentology of Continental Clastic Rocks in China. Acta Sedimentologica Sinica, 10(3): 16-24 (in Chinese with English abstract).
      Sullivan, K. B., Mcbridge, E. F., Elfenbein, C., 1991. Diagenesis of Sandstones at Shale Contacts and Diagenetic Heterogeneity, Frio Formation, Texas. American Association of Petroleum Geologists Bulletin, 75(1): 121-138.
      Wang, S. J., 2001. Fluvial Depositional Systems and River Pattern Evolution of Middle Jurassic Series, Datong Basin. Acta Sedimentologica Sinica, 19(4): 501-505 (in Chinese with English abstract).
      Xu, A. N., Mu, L. X., Qiu, Y. N., 1998. Distribution Pattern of OOIP and Remaining Mobile Oil in Different Types of Sedimentary Reservoir of China. Petroleum Exploration and Development, 25(5): 41-44 (in Chinese with English abstract).
      Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock"System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract).
      Yao, Z. Q., Yu, X. H., Shan, X., et al., 2018. Braided-Meandering System Evolution in the Rock Record: Implications for Climate Control on the Middle-Upper Jurassic in the Southern Junggar Basin, North-West China. Geological Journal, 53(6): 1-22.
      Yu, X. H., Ma, X. X., Mu, L. X., et al, 2004. Geological Model and Hierarchical Bounding Surface Analysis of Braided River Reservoir. Petroleum Industry Press, Beijing, 64-66 (in Chinese).
      Yue, D. L., Wu, S. H., Cheng, H. M., et al., 2008. Numerical Reservoir Simulation and Remaining Oil Distribution Patterns Based on 3D Reservoir Architecture Model. Journal of China University of Petroleum (Edition of Natural Science), 32(2): 21-27 (in Chinese with English abstract).
      Yue, D. L., Wu, S. H., Liu, J. M., 2007. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River. Acta Petrolei Sinica, 28(4): 99-103 (in Chinese with English abstract).
      白桦, 2011. 大同盆地中生代原型盆地恢复(硕士学位论文). 北京: 中国石油大学.
      陈彬滔, 于兴河, 王天奇, 等, 2015. 砂质辫状河岩相与构型特征: 以山西大同盆地中侏罗统云冈组露头为例. 石油与天然气地质, 36(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501015.htm
      陈玉琨, 吴胜和, 毛平, 等, 2012. 砂质辫状河储集层构型表征: 以大港油区羊三木油田馆陶组为例. 新疆石油地质, 33(5): 523-526. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201205005.htm
      陈玉琨, 吴胜和, 王延杰, 等, 2015. 常年流水型砂质辫状河心滩坝内部落淤层展布样式探讨. 沉积与特提斯地质, 35(1): 96-101, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201501012.htm
      陈庸勋, 戴东林, 1962. 山西省大同地区侏罗系的沉积相. 地质学报, 36(3): 321-336, 354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196203005.htm
      邓宏文, 王洪亮, 李小孟, 1997. 高分辨率层序地层对比在河流相中的应用. 石油与天然气地质, 18(2): 90-95, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT702.001.htm
      李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 待刊.
      梁宏伟, 吴胜和, 穆龙新, 等, 2013. 基准面旋回对河流相储层物性差异及声波测井影响. 地球科学, 38(5): 1135-1142. doi: 10.3799/dqkx.2013.113
      孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
      裘亦楠, 1992. 中国陆相碎屑岩储层沉积学的进展. 沉积学报, 10(3): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199203003.htm
      王随继, 2001. 大同盆地中侏罗世河流沉积体系及古河型演化. 沉积学报, 19(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200104004.htm
      徐安娜, 穆龙新, 裘怿楠, 1998. 我国不同沉积类型储集层中的储量和可动剩余油分布规律. 石油勘探与开发, 25(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK805.011.htm
      姚光庆, 姜平, 2021. 储层"源‒径‒汇‒岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
      于兴河, 马兴祥, 穆龙新, 等, 2004. 辫状河储层地质模式及层次界面分析. 北京: 石油工业出版社, 64-66.
      岳大力, 吴胜和, 程会明, 等, 2008. 基于三维储层构型模型的油藏数值模拟及剩余油分布模式. 中国石油大学学报(自然科学版), 32(2): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200802004.htm
      岳大力, 吴胜和, 刘建民, 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704019.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (859) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return