Citation: | Li Leguang, Wang Lianxun, Zhu Yuxiang, Ma Changqian, She Zhenbing, Cao Liang, Leng Shuangliang, Yan Yuqiao, 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141 |
Agangi, A., Kamenetsky, V. S., McPhie, J., 2010. The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in Felsic Magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3-4): 314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008
|
Bartels, A., Holtz, F., Linnen, R. L., 2010. Solubility of Manganotantalite and Manganocolumbite in Pegmatitic Melts. American Mineralogist, 95(4): 537-544. https://doi.org/10.2138/am.2010.3157
|
Charoy, B., Noronha, F., Lima, A., 2001. Spodumene Petalite Eucryptite: Mutual Relationships and Pattern of Alteration in Li-Rich Aplite Pegmatite Dykes from Northern Portugal. The Canadian Mineralogist, 39(3): 729-746. https://doi.org/10.2113/gscanmin.39.3.729
|
Che, X. D., Wang, R. C., Wu, F. Y., et al., 2019. Episodic Nb-Ta Mineralisation in South China: Constraints from in Situ LA-ICP-MS Columbite-Tantalite U-Pb Dating. Ore Geology Reviews, 105: 71-85. https://doi.org/10.1016/j.oregeorev.2018.11.023
|
Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U-Pb Isotopic Dating of Columbite-Tantalite by LA- ICP-MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008
|
Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral-An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15.
|
Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636
|
Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
|
Ji, W. B., Faure, M., Lin., W., et al., 2018. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research: Solid Earth, 123(1): 689-710. https://doi.org/10.1002/2017jb014597
|
Jiang, P. F., Li, P., Li, J. K., et al., 2021. Zircon U-Pb Geochronology and Hf Isotopic Composition of Be-Pegmatites in Maiguo Deposit, Eastern Mufushan, and Their Geological Implications. Mineral Deposits, 40 (4): 723-739 (in Chinese with English abstract).
|
Leng, S. L., Tan, C., Huang, J. M., et al., 2018. Metallogenic Law of Rare Metals in the Mufushan Granite Area. Resources Environment & Engineering, 32(3): 351-357 (in Chinese with English abstract).
|
Li, A. B., Huang, Q., Feng, C., et al., 2021. Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith. Earth Science, 46(12): 4517-4532 (in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112019
|
Li, J. K., Liu, C. Y., Liu, X., et al., 2019. Tantalum and Niobium Mineralization from F- and Cl-Rich Fluid in the Lepidolite-Rich Pegmatite from the Renli Deposit in Northern Hunan, China: Constraints of Fluid Inclusions and Lepidolite Crystallization Experiments. Ore Geology Reviews, 115: 103187. https://doi.org/10.1016/j.oregeorev.2019.103187
|
Li, J. K., Zou, T. R., Wang, D. H., et al., 2017. A Review of Beryllium Metallogenic Regularity in China. Mineral Deposits, 36 (4): 951-978 (in Chinese with English abstract).
|
Li, J., Huang, X. L., He, P. L., et al., 2015. In Situ Analyses of Micas in the Yashan Granite, South China: Constraints on Magmatic and Hydrothermal Evolutions of W and Ta-Nb Bearing Granites. Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028
|
Li, L. G., Wang, L. X., Tian, Y., et al., 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550 (in Chinese with English abstract).
|
Li, P., Li, J. K., Chen, Z. Y., et al., 2021. Compositional Evolution of the Muscovite of Renli Pegmatite-Type Rare-Metal Deposit, Northeast Hunan, China: Implications for Its Petrogenesis and Mineralization Potential. Ore Geology Reviews, 138: 104380. https://doi.org/10.1016/j.oregeorev.2021.104380
|
Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237
|
Li, P., Li, J. K., Pei, R. F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence. Earth Science, 42(10): 1684-1696 (in Chinese with English abstract).
|
Li, P, Liu, X., Li, J. K., et al., 2019. Petrographic and Geochemical Characteristics of Renli-Chuanziyuan No. 5 Pegmatite, NE Hunan, and Its Metallogenic Age. Acta Geologica Sinica, 93(6): 1374-1391 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.016
|
Li, P., Zhou, F. C., Li, J. K., et al., 2020. Zircon U-Pb Ages and Hf Isotopic Compositions of the Concealed Granite of Renli-Chuanziyuan Deposit, NE Hunan and Geological Significance. Geotectonica et Metallogenia, 44(3): 486-500 (in Chinese with English abstract).
|
Liu, X., Zhou, F. C., Li, P., et al., 2019. Geological Characteristics and Metallogenic Age of Renli Rare Metal Orefield in Hunan and Its Prospecting Significance. Mineral Deposits, 38(4): 771-791 (in Chinese with English abstract).
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
London, D., 2018. Ore-Forming Processes within Granitic Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
|
Lü, Z. H., Zhang, H., Tang, Y., 2021. Anatexis Origin of Rare Metal/Earth Pegmatites: Evidences from the Permian Pegmatites in the Chinese Altai. Lithos, 380-381: 105865. https://doi.org/10.1016/j.lithos.2020.105865
|
Ludwig, K., 2010. Isoplot/Ex Version 4.1: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
|
Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
|
Monier, G., Robert, J. L., 1986. Evolution of the Miscibility Gap between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600 ℃, 2 kbar PH2O: Comparison with Natural Lithium Micas. Mineralogical Magazine, 50(358): 641-651. https://doi.org/10.1180/minmag.1986.050.358.09
|
Robles, E. R., Pesquera, A., Crespo, P. G., et al., 2012. From Granite to Highly Evolved Pegmatite: A Case Study of the Pinilla de Fermoselle Granite-Pegmatite System (Zamora, Spain). Lithos, 153: 192-207. https://doi.org/10.1016/j.lithos.2012.04.027
|
Romer, R. L., Lehmann, B., 1995. U-Pb Columbite Age of Neoproterozoic Ta-Nb Mineralization in Burundi. Economic Geology, 90(8): 2303-2309. https://doi.org/10.2113/gsecongeo.90.8.2303
|
Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
|
Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009. https://doi.org/10.1007/s00410-014-1009-3
|
Stewart, D. B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63: 970-980.
|
Tindle, A. G., Webb, P. C., 1990. Estimation of Lithium Contents in Trioctahedral Micas Using Microprobe Data: Application to Micas from Granitic Rocks. European Journal of Mineralogy, 2(5): 595-610. https://doi.org/10.1127/ejm/2/5/0595
|
Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(408): 809-834.
|
Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.003
|
Wang, D. H., Zou, T. R., Xu, Z. G., et al., 2004. Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process. Advance in Earth Sciences, 19(4): 614-620 (in Chinese with English abstract).
|
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206-207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026
|
Wang, R. C., Che, X. D., Wu, B., et al., 2020. Critical Mineral Resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763-3777 (in Chinese). doi: 10.1360/TB-2020-0271
|
Wang, R. C., Che, X. D., Zhang, W. L., et al., 2009. Geochemical Evolution and Late Re-Equilibration of Na-Cs-Rich Beryl from the Koktokay #3 Pegmatite (Altai, NW China). European Journal of Mineralogy, 21(4): 795-809. https://doi.org/10.1127/0935-1221/2009/0021-1936
|
Wang, R. C., Wu, B., Xie, L., et al., 2021. Global Tempo-Spatial Distribution of Rare-Metal Mineralization and Continental Evolution. Acta Geologica Sinica, 95(1): 182-193 (in Chinese with English abstract).
|
Wang, Z., Chen, Z. Y., Li, J. K., et al., 2019. Indication of Mica Minerals for Magmatic-Hydrothermal Evolution of Renli Rare Metal Pegmatite Deposit. Mineral Deposits, 38(5): 1039-1052 (in Chinese with English abstract).
|
Xiong, Y. Q., Jiang, S. Y., Wen, C. H., et al., 2020. Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China: Constraints from U-Th-Pb Geochronology of Coltan, Monazite, and Zircon. Lithos, 358-359: 105422. https://doi.org/10.1016/j.lithos.2020.105422
|
Xu, C., Li, J. K., Shi, G. H., et al., 2019. Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications. Mineral Deposits, 38(5): 1053-1068 (in Chinese with English abstract).
|
Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
|
Yang, H., Chen, Z. Y., Li, J. K., et al., 2019. Relationship between the Mineralization and the Evolution of Mica and Feldspar Components of Renli-Chuanziyuan No. 5 Pegmatite, Northeast Hunan. Mineral Deposits, 38(4): 851-866 (in Chinese with English abstract).
|
Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41
|
Zhang, R. B., 1985. Petalite was Found in Lithium Pegmatite in Hubei Province. Chinese Science Bulletin, 30(11): 852-854 (in Chinese). doi: 10.1360/csb1985-30-11-852
|
Zhang, Y. Y., Zhang, R. B., 2008. The Discovery of Spodumene in Petalite Pegmatite, Tongcheng, Hubei China. Journal of Mineralogy and Petrology, 28(3): 37-40 (in Chinese with English abstract).
|
Zhou, F. C., Huang, Z. B., Liu, X., et al., 2020. Re-Os Dating of Molybdenite from the Renli Nb-Ta Deposit, Hunan Province, and Its Geological Significance. Geotectonica et Metallogenia, 44(3): 476-485 (in Chinese with English abstract).
|
Zhou, F. C., Li, J. K., Liu, X., et al., 2019. Geochemical Characteristics and Genetic Significance of Ore Bodies in Renli Nb-Ta Deposit, Hunan Province. Acta Geologica Sinica, 93(6): 1392-1404 (in Chinese with English abstract).
|
Zhou, F. C., Li, P., Liu, X., et al., 2021. Petrographic and Mineralogical Characteristics of Renli Rare Metal Deposit in Hunan Province and Their Geological Implications: A Case Study of Drill Hole ZK708 of the No. 5 Vein. Mineral Deposits, 40(4): 753-775 (in Chinese with English abstract).
|
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
|
姜鹏飞, 李鹏, 李健康, 等, 2021. 幕阜山东部麦埚铍矿床伟晶岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 40 (4): 723-739. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104005.htm
|
冷双梁, 谭超, 黄景孟, 等, 2018. 幕阜山花岗岩地区稀有金属成矿规律初探. 资源环境与工程, 32(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201803005.htm
|
李安邦, 黄勤, 冯超, 等, 2021. 幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定. 地球科学, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
|
李建康, 邹天人, 王登红, 等, 2017. 中国铍矿成矿规律. 矿床地质, 36(4): 951-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202302003.htm
|
李乐广, 王连训, 田洋, 等, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
|
李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696. doi: 10.3799/dqkx.2017.114
|
李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里‒传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代. 地质学报, 93(6): 1374-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906016.htm
|
李鹏, 周芳春, 李建康, 等, 2020. 湘东北仁里‒传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 大地构造与成矿学, 44(3): 486-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003013.htm
|
刘翔, 周芳春, 李鹏, 等, 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771-791. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htm
|
毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
|
王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906003.htm
|
王登红, 邹天人, 徐志刚, 等, 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404019.htm
|
王汝成, 车旭东, 邬斌, 等, 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763-3777. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033011.htm
|
王汝成, 邬斌, 谢磊, 等, 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101013.htm
|
王臻, 陈振宇, 李建康, 等, 2019. 云母矿物对仁里稀有金属伟晶岩矿床岩浆‒热液演化过程的指示. 矿床地质, 38(5): 1039-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905006.htm
|
许畅, 李建康, 施光海, 等, 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905007.htm
|
徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
|
杨晗, 陈振宇, 李建康, 等, 2019. 湘东北仁里‒传梓源5号伟晶岩脉云母和长石成分的演化与成矿作用的关系. 矿床地质, 38(4): 851-866. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904011.htm
|
张如柏, 1985. 湖北锂伟晶岩中发现透锂长石. 科学通报, 30(11): 852-854. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198511015.htm
|
张玉玉, 张如柏, 2008. 湖北通城透锂长石伟晶岩中锂辉石的发现. 矿物岩石, 28(3): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200803007.htm
|
周芳春, 黄志飚, 刘翔, 等, 2020. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义. 大地构造与成矿学, 44(3): 476-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003012.htm
|
周芳春, 李建康, 刘翔, 等, 2019. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义. 地质学报, 93(6): 1392-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906017.htm
|
周芳春, 李鹏, 刘翔, 等, 2021. 湖南仁里稀有金属矿床岩相学和矿物学特征及其地质意义: 以5号脉ZK708号钻孔为例. 矿床地质, 40(4): 753-775. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104007.htm
|
![]() |
![]() |