• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Lü Liqun, Wang Zhaoyin, Meng Zhe, 2024. Reconstruction of Debris Flow Disasters in Polong Gully Based on Dendrochronology. Earth Science, 49(1): 335-346. doi: 10.3799/dqkx.2022.142
    Citation: Lü Liqun, Wang Zhaoyin, Meng Zhe, 2024. Reconstruction of Debris Flow Disasters in Polong Gully Based on Dendrochronology. Earth Science, 49(1): 335-346. doi: 10.3799/dqkx.2022.142

    Reconstruction of Debris Flow Disasters in Polong Gully Based on Dendrochronology

    doi: 10.3799/dqkx.2022.142
    • Received Date: 2021-12-23
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Polong gully is a primary tributary on the right bank of Palong Zangbu River. Four recorded debris flows in 1983, 1984, 1985 and 2015 repeatedly blocked the river and formed a 1 km-long barrier lake. But some individual debris flow was too small to flush out the gully and be recorded. Based on the method of dendrochronology and the analysis of damaged tissue, growth inhibition and release of tree rings, the temporal-spatial distribution of the main debris flow events, debris flows in the tributaries and landslides in the main gully in the past 40 years were reconstructed. From the intensity of tree growth disturbance, the inundate area of debris flow was discussed. The relationship between the occurrence time of debris flow and inundate area was further analyzed by the index of Wit. The results show that the accuracy of debris flow event dating reflected by dendrochronology was related to the debris flow scale. Extra-large-scale of debris flow would lead to the elimination of disaster historical memory of disturbed trees, which was not conducive to the debris flow dating. The debris flows in the tributaries and landslides in the main gully would disturb the debris flow dating in the main gully. Debris flows in the gully tributaries and landslides in the main gully occurring at the same time would increase the value of Wit, which was conducive to debris flows dating in the main gully.

       

    • loading
    • Alestalo, J., 1971. Dendrochronological Interpretation of Geomorphic Processes. Fennia, 105: 1-139.
      Ballesteros-Cánovas, J. A., Rodríguez-Morata, C., Garófano-Gómez, V., et al., 2015. Unravelling Past Flash Flood Activity in a Forested Mountain Catchment of the Spanish Central System. Journal of Hydrology, 529: 468-479. https://doi.org/10.1016/j.jhydrol.2014.11.027
      Bollschweiler, M., Stoffel, M., 2010. Tree Rings and Debris Flows: Recent Developments, Future Directions. Progress in Physical Geography: Earth and Environment, 34(5): 625-645. https://doi.org/10.1177/0309133310370283
      Bollschweiler, M., Stoffel, M., Schneuwly, D. M., et al., 2008. Traumatic Resin Ducts in Larix Decidua Stems Impacted by Debris Flows. Tree Physiology, 28(2): 255-263. https://doi.org/10.1093/treephys/28.2.255
      Bollschweiler, M., Stoffel, M., Ehmisch, M., et al., 2007. Reconstructing Spatio-Temporal Patterns of Debris-Flow Activity Using Dendrogeomorphological Methods. Geomorphology, 87(4): 337-351. https://doi.org/10.1016/j.geomorph.2006.10.002
      Hewitt, K., 1998. Catastrophic Landslides and Their Effects on the Upper Indus Streams, Karakoram Himalaya, Northern Pakistan. Geomorphology, 26(1-3): 47-80. https://doi.org/10.1016/S0169-555X(98)00051-8
      Hupp, C. R., 1984. Dendrogeomorphic Evidence of Debris Flow Frequency and Magnitude at Mount Shasta, California. Environmental Geology and Water Sciences, 6(2): 121-128. https://doi.org/10.1007/BF02509918
      Hupp, C. R., Osterkamp, W., Thornton, J. L., 1987. Dendrogeomorphic Evidence and Dating of Recent Debris Flows on Mount Shasta, Northern California. U. S. Geological Survey Professional Paper, 1936-B.
      Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., et al., 2011. Possibilities and Limitations of Dendrogeomorphic Time-Series Reconstructions on Sites Influenced by Debris Flows and Frequent Snow Avalanche Activity. Arctic, Antarctic, and Alpine Research, 43(4): 649-658. https://doi.org/10.1657/1938-4246-43.4.649
      Korup, O., Montgomery, D. R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature, 455(7214): 786-789. https://doi.org/10.1038/nature07322
      Lai, Z. P., Yang, A. N., Cong, L., et al., 2021. A Review on the Dating Techniques for Mountain Hazards-Induced Sediments. Earth Science Frontiers, 28(2): 1-18 (in Chinese with English abstract).
      Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract).
      Lundström, T., Stoffel, M., Stöckli, V., 2008. Fresh-Stem Bending of Silver Fir and Norway Spruce. Tree Physiology, 28(3): 355-366. https://doi.org/10.1093/treephys/28.3.355
      Lü, L. Q., Zhou, G. Y., Ma, C., et al., 2023. Coupling Process of Debris Flow Erosion and Wavy Flow Caused by Incision on Paleosedimentary Basin. Earth Science, 48(9): 3389-3401 (in Chinese with English abstract).
      Mayer, B., Stoffel, M., Bollschweiler, M., et al., 2010. Frequency and Spread of Debris Floods on Fans: A Dendrogeomorphic Case Study from a Dolomite Catchment in the Austrian Alps. Geomorphology, 118(1-2): 199-206. https://doi.org/10.1016/j.geomorph.2009.12.019
      Procter, E., Bollschweiler, M., Stoffel, M., et al., 2011. A Regional Reconstruction of Debris-Flow Activity in the Northern Calcareous Alps, Austria. Geomorphology, 132(1-2): 41-50. https://doi.org/10.1016/j.geomorph.2011.04.035
      Ruiz-Villanueva, V., Díez-Herrero, A., Stoffel, M., et al., 2010. Dendrogeomorphic Analysis of Flash Floods in a Small Ungauged Mountain Catchment (Central Spain). Geomorphology, 118(3-4): 383-392. https://doi.org/10.1016/j.geomorph.2010.02.006
      Schneuwly, D. M., Stoffel, M., Dorren, L. K. A., et al., 2009. Three-Dimensional Analysis of the Anatomical Growth Response of European Conifers to Mechanical Disturbance. Tree Physiology, 29(10): 1247-1257. https://doi.org/10.1093/treephys/tpp056
      Schweingruber, F. H., 1997. Tree Rings and Environment Dendroecology. Paul Haupt Publishers, Berne.
      Šilhán, K., Ružek, I., Frištyk, M., et al., 2021. Growth Responses of Pinus sylvestris (L.) to Burial by Drift Sand and Its Application to the Reconstruction of Aeolian Dune Development. Catena, 196: 104830. https://doi.org/10.1016/j.catena.2020.104830
      Stoffel, M., Beniston, M., 2006. On the Incidence of Debris Flows from the Early Little Ice Age to a Future Greenhouse Climate: A Case Study from the Swiss Alps. Geophysical Research Letters, 33(16): L16404. https://doi.org/10.1029/2006gl026805
      Stoffel, M., Bollschweiler, M., Hassler, G. R., 2006. Differentiating Past Events on a Cone Influenced by Debris-Flow and Snow Avalanche Activity-A Dendrogeomorphological Approach. Earth Surface Processes and Landforms, 31(11): 1424-1437. doi: 10.1002/esp.1363
      Stoffel, M., Casteller, A., Luckman, B. H., et al., 2012. Spatiotemporal Analysis of Channel Wall Erosion in Ephemeral Torrents Using Tree Roots-An Example from the Patagonian Andes. Geology, 40(3): 247-250. https://doi.org/10.1130/g32751.1
      Stoffel, M., Conus, D., Grichting, M. A., et al., 2008. Unraveling the Patterns of Late Holocene Debris-Flow Activity on a Cone in the Swiss Alps: Chronology, Environment and Implications for the Future. Global and Planetary Change, 60(3-4): 222-234. https://doi.org/10.1016/j.gloplacha.2007.03.001
      Stoffel, M., Bollschweiler, M., 2008. Tree-Ring Analysis in Natural Hazards Research-An Overview. Natural Hazards and Earth System Sciences, 8(2): 187-202. https://doi.org/10.5194/nhess-8-187-2008
      Stoffel, M., Lièvre, I., Conus, D., et al., 2005. 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland. Arctic, Antarctic, and Alpine Research, 37(3): 387-395. https://doi.org/10.1657/1523-0430(2005)037[0387:yodaat]2.0.co;2
      Strunk, H., 1997. Dating of Geomorphological Processes Using Dendrogeomorphological Methods. Catena, 31(1-2): 137-151. https://doi.org/10.1016/S0341-8162(97)00031-3
      Tie, Y. B., Malik, I., Owczarek, P., 2014. Dendrochronological Dating of Debris Flow Historical Events in High Mountain Area-Take Daozao Debris Flow as an Example. Mountain Research, 32(2): 226-232 (in Chinese with English abstract).
      Trappmann, D., Corona, C., Stoffel, M., 2013. Rolling Stones and Tree Rings: A State of Research on Dendrogeomorphic Reconstructions of Rockfall. Progress in Physical Geography: Earth and Environment, 37(5): 701-716. https://doi.org/10.1177/0309133313506451
      Wang, J., 2019. Influence of Moraine on Debris Flow in Palong Zangbu Basin (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Wang, Z., Hu, K. H., Ma, C., et al., 2021. Landscape Change in Response to Multiperiod Glacial Debris Flows in Peilong Catchment, Southeastern Tibet. Journal of Mountain Science, 18(3): 567-582. https://doi.org/10.1007/s11629-020-6172-6
      赖忠平, 杨安娜, 丛禄, 等, 2021. 山地灾害沉积物的测年综述. 地学前缘, 28(2): 1-18.
      李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
      吕立群, 周冠宇, 马超, 等, 2023. 古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程. 地球科学, 48(9): 3389-3401. doi: 10.3799/dqkx.2022.329
      铁永波, Malik, I., Owczarek, P., 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用——以磨西河流域倒灶沟为例. 山地学报, 32(2): 226-232.
      王姣, 2019. 帕隆藏布流域冰碛物对泥石流活动影响(博士学位论文). 北京: 中国科学院大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (305) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return