• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Ding Weijie, Liu Dianshu, 2023. Blasting-Induced Peak Particle Velocity Prediction of Hole-by-Hole Blasting Operation Using Digital Electronic Detonator in Open-Pit Mine. Earth Science, 48(5): 2000-2010. doi: 10.3799/dqkx.2022.144
    Citation: Ding Weijie, Liu Dianshu, 2023. Blasting-Induced Peak Particle Velocity Prediction of Hole-by-Hole Blasting Operation Using Digital Electronic Detonator in Open-Pit Mine. Earth Science, 48(5): 2000-2010. doi: 10.3799/dqkx.2022.144

    Blasting-Induced Peak Particle Velocity Prediction of Hole-by-Hole Blasting Operation Using Digital Electronic Detonator in Open-Pit Mine

    doi: 10.3799/dqkx.2022.144
    • Received Date: 2022-04-15
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Current research on blasting-induced peak particle velocity prediction in open-pit mines is infeasible for the hole-by-hole blasting operation using digital electronic detonators, and its models lack interpretability. By recording the blasting parameters for each blasthole and measuring the induced triaxial particle velocity, a model to predict the triaxial peak particle velocity is established based on LightGBM, and SHAP is introduced to interpret the variable importance of the model. Regarding the root mean squared error RMSE and goodness of fitting R2 on the test set, the established LightGBM model outperforms the support vector machine and neural network models as its RMSE decreases by 25.9% and 28.9%, while the R2 improves by 12.7% and 9.9%. Compared to the Sadaovsk empirical formula, which is widely applied to the blasting design and safety evaluation, the RMSE of LightGBM declines by 63.4%, 39.5% and 68.3%, while the R2 increases by 18.9%, 27.7%and 42.4% in the longitudinal axis X, transverse axis Y and vertical axis Z, respectively. The SHAP values computed from the model inform that apart from the axis variable, the distance between blasting source and monitoring point, total charge, the minimum row distance, the average charge length, hole diameter and the maximum hole distance are the six most influencing variables that affect the predicted value of peak particle velocity. The distance between blasting source and monitoring point is negatively correlated with the predicted peak particle velocity, while the other five variables are positively correlated with the predicted value.

       

    • loading
    • Aladejare, A. E., Lawal, A. I., Onifade, M., 2022. Predicting the Peak Particle Velocity from Rock Blasting Operations Using Bayesian Approach. Acta Geophysica, 70(2): 581-591. https://doi.org/10.1007/s11600-022-00727-5
      Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106 (in Chinese with English abstract).
      He, J., Chalise, P., 2020. Nested and Repeated Cross Validation for Classification Model with High-Dimensional Data. Revista Colombiana de Estadística, 43(1): 103-125. doi: 10.15446/rce.v43n1.80000
      He, L., Yang, R. S., Zhong, D. W., et al., 2021. Calculation of Equivalent Charge Weight Per Delay and Vibration Velocity Prediction for Millisecond Delay Blasting. Explosion and Shock Waves, 41(9): 129-141 (in Chinese with English abstract).
      Hosseini, S. A., Tavana, A., Abdolahi, S. M., et al., 2019. Prediction of Blast-Induced Ground Vibrations in Quarry Sites: A Comparison of GP, RSM and MARS. Soil Dynamics and Earthquake Engineering, 119: 118-129. doi: 10.1016/j.soildyn.2019.01.011
      Jiao, H., Du, X., Zhao, M., et al., 2021. Nonlinear Seismic Response of Rock Tunnels Crossing Inactive Fault under Obliquely Incident Seismic P Waves. Journal of Earth Science, 32(5): 1174-1189. doi: 10.1007/s12583-021-1483-2
      Ke, G., Meng, Q., Finley, T., et al., 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California.
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
      Lundberg, S. M., Erion, G. G., Lee, S. I., 2018. Consistent Individualized Feature Attribution for Tree Ensembles. Methods, 5(13): 25. http://arxiv.org/pdf/1802.03888
      Lundberg, S. M., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California.
      Tian, X., Song, Z., Wang, J., 2019. Study on the Propagation Law of Tunnel Blasting Vibration in Stratum and Blasting Vibration Reduction Technology. Soil Dynamics and Earthquake Engineering, 126: 105813. https://doi.org/10.1016/j.soildyn.2019.105813
      Trivedi, R., Singh, T., Raina, A., 2014. Prediction of Blast-Induced Flyrock in Indian Limestone Mines Using Neural Networks. Journal of Rock Mechanics and Geotechnical Engineering, 6(5): 447-454. doi: 10.1016/j.jrmge.2014.07.003
      Yang, X., Zhang, Y. P., Li, Y., et al., 2017. Analysis of Seismic Wave Propagation Law of Multi-Step Terrain Blasting and Correction of Blasting Vibration Velocity Prediction Formula. Mining Research and Development, 37(5): 78-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK201705017.htm
      Zhang, G. C., Guo, L. J., Jia, J. J., et al., 2020. Response Characteristics of Blasting Vibration to Rock Slope in an Open-Pit Iron Mine. China Mining Magazine, 29(12): 165-169 (in Chinese with English abstract).
      Zhang, W., Li, H., Li, Y. et al, 2021a. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462-021-09967-1
      Zhang, X., Peng, X., Li, X., et al., 2021b. Three- Dimensional Seismic Response in Complex Site Conditions: A New Approach Based on an Auxiliary-Model Method. Journal of Earth Science, 32 (5): 1152-1165. doi: 10.1007/s12583-021-1471-6
      Zhang, W., Phoon, K. K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Journal of Rock Mechanics and Geotechnical Engineering, 14(3): 671-673. doi: 10.1016/j.jrmge.2022.01.001
      Zhang, Y. P., Yang, X., Zhu, X. X., 2018. Critical Velocity and Safety Distance Calculation under Influence of Blasting Vibration. Industrial Minerals & Processing, 47(8): 28-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HGKJ201808007.htm
      Zhou, J. R., Lu, W. B., Yan, P., et al., 2016. Frequency-Dependent Attenuation of Blasting Vibration Waves. Rock Mechanics and Rock Engineering, 49(10): 4061-4072. https://doi.org/10.1007/s00603-016-1046-5
      Zhu, M., Hu, X. T., Feng, Z. W., et al., 2021. Optimization of Blasting Vibration Velocity Attenuation Model under the Condition of Soil-Rock Strata. Science Technology and Engineering, 21(10): 4211-4218 (in Chinese with English abstract).
      郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
      何理, 杨仁树, 钟东望, 等, 2021. 毫秒延时爆破等效单响药量计算及振速预测. 爆炸与冲击, 41(9): 129-141. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202109011.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      杨曦, 张云鹏, 李岩, 等, 2017. 多台阶地形爆破地震波传播规律分析及爆破振速预测公式修正. 矿业研究与开发, 37(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201705017.htm
      张耿城, 郭连军, 贾建军, 等, 2020. 某露天铁矿爆破振动对边坡的动态响应特征研究. 中国矿业, 29(12): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202012028.htm
      张云鹏, 杨曦, 朱晓玺, 2018. 爆破振动影响下露天边坡临界振速及安全距离计算. 化工矿物与加工, 47(8): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201808007.htm
      朱明, 胡鑫涛, 冯志威, 等, 2021. 土岩复合地层条件下爆破振速衰减模型优选. 科学技术与工程, 21(10): 4211-4218. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202110050.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(6)

      Article views (707) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return