Citation: | Cheng Yihan, Deng Yamin, Xue Jiangkai, Zhang Yuxi, 2024. Formation Mechanism and Characterization of Mn(Ⅲ)-Humic Ligands Colloids in Ground Water Environment. Earth Science, 49(2): 793-802. doi: 10.3799/dqkx.2022.145 |
Alvarez-Puebla, R. A., Garrido, J. J., 2005. Effect of PH on the Aggregation of a Gray Humic Acid in Colloidal and Solid States. Chemosphere, 59(5): 659-667. https://doi.org/10.1016/j.chemosphere.2004.10.021
|
Boyle, E. S., Guerriero, N., Thiallet, A., et al., 2009. Optical Properties of Humic Substances and CDOM: Relation to Structure. Environmental Science & Technology, 43(7): 2262-2268. https://doi.org/10.1021/es803264g
|
Chen, C. M., Dynes, J. J., Wang, J., et al., 2014. Properties of Fe-Organic Matter Associations Via Coprecipitation Versus Adsorption. Environmental Science & Technology, 48(23): 13751-13759. https://doi.org/10.1021/es503669u
|
Chin, Y. P., Aiken, G., O'Loughlin, E., 1994. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environmental Science & Technology, 28(11): 1853-1858. https://doi.org/10.1021/es00060a015
|
Dalzell, B. J., Minor, E. C., Mopper, K. M., 2009. Photodegradation of Estuarine Dissolved Organic Matter: A Multi-Method Assessment of DOM Transformation. Organic Geochemistry, 40(2): 243-257. https://doi.org/10.1016/j.orggeochem.2008.10.003
|
Dellwig, O., Schnetger, B., Brumsack, H. J., et al., 2012. Dissolved Reactive Manganese at Pelagic Redoxclines (part Ⅱ): Hydrodynamic Conditions for Accumulation. Journal of Marine Systems, 90(1): 31-41. https://doi.org/10.1016/j.jmarsys.2011.08.007
|
Gao, Y., Ming, Y., Gao, L., 2022. Distributions and Seasonal Variations of Dissolved Organic Matter(DOM) in the Changjiang(Yangtze River) Estuary and Its Adjacent Area in 2019. Marine Environmental Science, 41(1): 40-47 (in Chinese with English abstract).
|
Guardado, I., Urrutia, O., Garcia-Mina, J. M., 2008. Some Structural and Electronic Features of the Interaction of Phosphate with Metal-Humic Complexes. Journal of Agricultural and Food Chemistry, 56(3): 1035-1042. https://doi.org/10.1021/jf072641k
|
Gui, X. Y., Song, B. Q., Chen, M., et al., 2021. Soil Colloids Affect the Aggregation and Stability of Biochar Colloids. Science of The Total Environment, 771(5): 145414. https://doi.org/10.1016/j.scitotenv.2021.145414
|
Hu, E. D., Zhang, Y., Wu, S. Y., et al., 2017. Role of Dissolved Mn(Ⅲ) in Transformation of Organic Contaminants: Non-Oxidative Versus Oxidative Mechanisms. Water Research, 111(5): 234-243. https://doi.org/10.1016/j.watres.2017.01.013
|
Johnson, K. L., McCann, C. M., Wilkinson, J. L., et al., 2018. Dissolved Mn(Ⅲ) in Water Treatment Works: Prevalence and Significance. Water Research, 140(Suppl. C): 181-190. https://doi.org/10.1016/j.watres.2018.04.038
|
Jones, M. E., Nico, P. S., Ying, S., et al., 2018. Manganese-Driven Carbon Oxidation at Oxic-Anoxic Interfaces. Environmental Science & Technology, 52(21): 12349-12357. https://doi.org/10.1021/acs.est.8b03791
|
Li, Q. Q., Xie, L., Jiang, Y., et al., 2019. Formation and Stability of NOM-Mn(Ⅲ) Colloids in Aquatic Environments. Water Research, 149(21): 190-201. https://doi.org/10.1016/j.watres.2018.10.094
|
Li, S. D., Jiang, Q, L., L, Y., 2017. Spectroscopic Characteristics and Sources of Dissolved Organic Matter from Soils around Dianchi Lake, Kunming. Spectroscopy and Spectral Analysis, 37(5): 1448-1454 (in Chinese with English abstract).
|
Li, Y., 2021. Composition, Spectral Characteristics and Source Analysis of Soils in Different Land Use Types(Dissertation), Xi'an University of Architecture and Technology, Xi'an (in Chinese with English abstract).
|
Liang, X. T., 2014. Iron and Manganese Circulation Process and Environmental Effects in Wetland Systems. Journal of Capital Normal University(Natural Science Edition), 35(3): 74-79(in Chinese with English abstract).
|
Liu, J. C., Wang, O. M., Li, J. J., et al., 2018. Mechanisms of Extracellular Electron Transfer in the Biogeochemical Manganese Cycle. Acta Microbiologica Sinica, 58(4): 546-559 (in Chinese with English abstract).
|
Luo, Y. P., Deng, Y. M., Du, Y., et al., 2022. Occurrence and Formation of High lodine Groundwater Inoxbows of the Middle Reach of the Yangtze River. Earth Science, 47(2): 662-673(in Chinese with English abstract).
|
Ma, A. L., Liu H., Mao S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract).
|
Ma, D., Wu, J., Yang, P., et al., 2020. Coupled Manganese Redox Cycling and Organic Carbon Degradation on Mineral Surfaces. Environmental Science & Technology, 54(14): 8801-8810. https://doi.org/10.1021/acs.est.0c02065
|
Madison, A. S., Tebo, B. M., Mucci, A., et al., 2013. Abundant Porewater Mn(Ⅲ) is a Major Component of the Sedimentary Redox System. Science, 341(6148): 875-878. https://doi.org/10.1126/science.1241396
|
Nowack, B., Stone, A. T., 2003. Manganese-Catalyzed Degradation of Phosphonic Acids. Environmental Chemistry Letters, 1(1): 24-31. https://doi.org/10.1007/s10311-002-0014-3
|
Oldham, V. E., Mucci, A., Tebo, B. M., et al., 2017. Soluble Mn(Ⅲ)-L Complexes are Abundant in Oxygenated Waters and Stabilized by Humic Ligands. Geochimica Et Cosmochimica Acta, 199: 238-246. https://doi.org/10.1016/j.gca.2016.11.043
|
Oldham, V. E., Owings, S. M., Jones, M. R., et al., 2015. Evidence for the Presence of Strong Mn(Ⅲ)-Binding Ligands in the Water Column of the Chesapeake Bay. Marine Chemistry, 171(3-4): 58-66. https://doi.org/10.1016/j.marchem.2015.02.008
|
Rathi, B., Jamieson, J., Sun, J., et al., 2020. Process-Based Modeling of Arsenic(Ⅲ) Oxidation by Manganese Oxides under Circumneutral PH Conditions. Water Research, 185(80): 116195. https://doi.org/10.1016/j.watres.2020.116195
|
Sharma, P., Ofner, J., Kappler, A., 2010. Formation of Binary and Ternary Colloids and Dissolved Complexes of Organic Matter, Fe and as. Environmental Science & Technology, 44(12): 4479-4485. https://doi.org/10.1021/es100066s
|
Shen, M. H., Hai, X., Shang, Y. X., et al., 2019. Insights into Aggregation and Transport of Graphene Oxide in Aqueous and Saturated Porous Media: Complex Effects of Cations with Different Molecular Weight Fractionated Natural Organic Matter. Science of The Total Environment, 656: 843-851. https://doi.org/10.1016/j.scitotenv.2018.11.387
|
Sun, W. L., Xia, J., Li, S., et al., 2012. Effect of Natural Organic Matter (NOM) on Cu(Ⅱ) Adsorption by Multi-Walled Carbon Nanotubes: Relationship with NOM Properties. Chemical Engineering Journal, 200-202: 627-636. https://doi.org/10.1016/j.cej.2012.06.118
|
Wu, J. F., Boyle, E., Sunda, W., et al., 2001. Soluble and Colloidal Iron in the Oligotrophic North Atlantic and North Pacific. Science, 293(5531): 847-849. https://doi.org/10.1126/science.1059251
|
Wu, S. L., Liu, Y. J., Bougoure, J. J., et al., 2019. Organic Matter Amendment and Plant Colonization Drive Mineral Weathering, Organic Carbon Sequestration, and Water-Stable Aggregation in Magnetite Fe Ore Tailings. Environmental Science & Technology, 53(23): 13720-13731. https://doi.org/10.1021/acs.est.9b04526
|
Yakushev, E. V., Pollehne, F., Jost, G., et al., 2007. Analysis of the Water Column Oxic/anoxic Interface in the Black and Baltic Seas with a Numerical Model. Marine Chemistry, 107(3): 388-410. https://doi.org/10.1016/j.marchem.2007.06.003
|
Yang, K., Lin, D. H., Xing, B. S., 2009. Interactions of Humic Acid with Nanosized Inorganic Oxides. Langmuir, 25(6): 3571-3576. https://doi.org/10.1021/la803701b
|
Yang, K., Xing, B. S., 2009. Adsorption of Fulvic Acid by Carbon Nanotubes from Water. Environmental Pollution, 157(4): 1095-1100. https://doi.org/10.1016/j.envpol.2008.11.007
|
Ying, C. Y., Lanson, B., Wang, C., et al., 2020. Highly Enhanced Oxidation of Arsenite at the Surface of Birnessite in the Presence of Pyrophosphate and the Underlying Reaction Mechanisms. Water Research, 187(5): 116420. https://doi.org/10.1016/j.watres.2020.116420
|
高源, 明玥, 高磊, 2022. 2019年长江口及其邻近海域溶解有机物的分布和季节变化特征海洋环境科学, 41(1): 40-47.
|
李帅东, 姜泉良, 黎烨, 等, 2017. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析. 光谱学与光谱分析, 37: 1448-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201705027.htm
|
李燚, 2021. 不同土地利用类型土壤中DOM组成特征、紫外荧光特性和来源分析(硕士学位论文), 西安: 西安建筑科技大学.
|
梁夏天, 2014. 湿地系统中铁锰循环过程及环境效应. 首都师范大学学报(自然科学版), 35(3): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSX201403015.htm
|
刘进超, 王欧美, 李佳佳, 等, 2018. 生物地球化学锰循环中的微生物胞外电子传递机制. 微生物学报, 58(4): 546-559. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201804005.htm
|
罗义鹏, 邓娅敏, 杜尧, 等, 2022. 长江中游故道区高碘地下水分布与形成机理. 地球科学, 47(2): 662-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202022.htm
|
马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202027.htm
|