• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Yu Qian, Zhang Yu, Dong Ting, Wu Guangwei, Li Ping, 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
    Citation: Yu Qian, Zhang Yu, Dong Ting, Wu Guangwei, Li Ping, 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146

    Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain

    doi: 10.3799/dqkx.2022.146
    • Received Date: 2022-04-15
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Surface water-groundwater (SW-GW) interaction is critical for arsenic transport in shallow groundwater systems, but the role of its pattern and intensity on arsenic transport remains unclear. Field monitoring and numerical simulation were employed to identify the impact of surface water-groundwater interaction mode and intensity on arsenic transport in shallow groundwater of Shahu field site, Jianghan Plain. The results indicate that the surface water recharged into groundwater and had a relatively stronger intensity in the rainy season, which led to the higher arsenic concentration, and vice versa. The seasonal shift of surface water-groundwater interaction mode and intensity could cause the seasonal response of groundwater flow velocity and direction. It is estimated by the numerical simulation that the maximum vertical exchange mass of arsenic is 457.2 mg/d in rainy season and 191.3 mg/d in dry season and the maximum horizontal exchange mass of arsenic is 4 380.0 and 1 385.6 mg/d in rainy and dry season, respectively.

       

    • loading
    • Chen, X. P., Deng, Y. H., Zhang, Y. Z., et al., 2007. The Epidemiological Survey and Analysis to Arsenism in Nanhong Village of Plain Hubei Province. Chinese Journal of Control of Endemic Diseases, 22(4): 281-282 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1889.2007.04.016
      Currell, M., Cartwright, I., Raveggi, M., et al., 2011. Controls on Elevated Fluoride and Arsenic Concentrations in Groundwater from the Yuncheng Basin, China. Applied Geochemistry, 26(4): 540-552. https://doi.org/10.1016/j.apgeochem.2011.01.012
      Deng, Y. M., Wang, Y. X., Li, H. J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2018. Characterizing Groundwater/Surface-Water Interactions in the Interior of Jianghan Plain, Central China. Hydrogeology Journal, 26(4): 1047-1059. https://doi.org/10.1007/s10040-017-1709-7
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001
      Duan, Y. H., Schaefer, M. V., Wang, Y. X., et al., 2019. Experimental Constraints on Redox-Induced Arsenic Release and Retention from Aquifer Sediments in the Central Yangtze River Basin. Science of the Total Environment, 649: 629-639. https://doi.org/10.1016/j.scitotenv.2018.08.205
      Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Gan, Y. Q., Zhao, K., Deng, Y. M., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      Guo, H. M., Wen, D. G., Liu, Z. Y., et al., 2014. A Review of High Arsenic Groundwater in Mainland and Taiwan, China: Distribution, Characteristics and Geochemical Processes. Applied Geochemistry, 41: 196-217. https://doi.org/10.1016/j.apgeochem.2013.12.016
      Guo, X. X., 2014. Arsenic Mobilization and Transport in Shallow Aquifer Systems of Jianghan Plain, Central China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Healy, R. W., Cook, P. G., 2002. Using Groundwater Levels to Estimate Recharge. Hydrogeology Journal, 10(1): 91-109. https://doi.org/10.1007/s10040-001-0178-0
      Islam, F. S., Boothman, C., Gault, A. G., et al., 2005. Potential Role of the Fe(Ⅲ)-Reducing Bacteria Geobacter and Geothrix in Controlling Arsenic Solubility in Bengal Delta Sediments. Mineralogical Magazine, 69(5): 865-875. https://doi.org/10.1180/0026461056950294
      Jha, P. K., Tripathi, P., 2021. Arsenic and Fluoride Contamination in Groundwater: A Review of Global Scenarios with Special Reference to India. Groundwater for Sustainable Development, 13: 100576. https://doi.org/10.1016/j.gsd.2021.100576
      Khan, M. R., Koneshloo, M., Knappett, P. S. K., et al., 2016. Megacity Pumping and Preferential Flow Threaten Groundwater Quality. Nature Communications, 7: 12833. https://doi.org/10.1038/ncomms12833
      Larsen, F., Pham, N. Q., Dang, N. D., et al., 2008. Controlling Geological and Hydrogeological Processes in an Arsenic Contaminated Aquifer on the Red River Flood Plain, Vietnam. Applied Geochemistry, 23(11): 3099-3115. https://doi.org/10.1016/j.apgeochem.2008.06.014
      McDonald, M. G., Harbaugh, A. W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. U. S. Geological Survey, Reston.
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Radloff, K. A., Zheng, Y., Stute, M., et al., 2017. Reversible Adsorption and Flushing of Arsenic in a Shallow, Holocene Aquifer of Bangladesh. Applied Geochemistry, 77: 142-157. https://doi.org/10.1016/j.apgeochem.2015.11.003
      Sathe, S. S., Mahanta, C., 2019. Groundwater Flow and Arsenic Contamination Transport Modeling for a Multi Aquifer Terrain: Assessment and Mitigation Strategies. Journal of Environmental Management, 231: 166-181. https://doi.org/10.1016/j.jenvman.2018.08.057
      Schaefer, M. V., Ying, S. C., Benner, S. G., et al., 2016. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 50(7): 3521-3529. https://doi.org/10.1021/acs.est.5b04986
      Simpson, S. C., Meixner, T., 2012. Modeling Effects of Floods on Streambed Hydraulic Conductivity and Groundwater-Surface Water Interactions. Water Resources Research, 48(2): W02515. https://doi.org/10.1029/2011wr011022
      Singh, R., Singh, S., Parihar, P., et al., 2015. Arsenic Contamination, Consequences and Remediation Techniques: A Review. Ecotoxicology and Environmental Safety, 112: 247-270. https://doi.org/10.1016/j.ecoenv.2014.10.009
      Song, X. F., Liu, X. C., Xia, J., et al., 2007. Study on the Transformation Relationship between Surface Water and Groundwater in Huaisha River Basin Based on Environmental Isotope Technology. Science in China (Series D), 37(1): 102-110 (in Chinese with English abstract).
      Swartz, C. H., Blute, N. K., Badruzzman, B., et al., 2004. Mobility of Arsenic in a Bangladesh Aquifer: Inferences from Geochemical Profiles, Leaching Data, and Mineralogical Characterization. Geochimica et Cosmochimica Acta, 68(22): 4539-4557. https://doi.org/10.1016/j.gca.2004.04.020
      van Geen, A., Zheng, Y., Goodbred, S. Jr., et al., 2008. Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environmental Science & Technology, 42(7): 2283-2288. https://doi.org/10.1021/es702316k
      Wang, J., Xie, Z. M., Wang, J., et al., 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651 (in Chinese with English abstract).
      Xie, Y. Q., Cook, P. G., Simmons, C. T., 2016. Solute Transport Processes in Flow-Event-Driven Stream-Aquifer Interaction. Journal of Hydrology, 538: 363-373. https://doi.org/10.1016/j.jhydrol.2016.04.031
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Yang, S. Z., Guo, H. M., Tang, X. H., et al., 2008. Distribution of Abnormal Groundwater Arsenic in Hetao Plain, Inner Mongolia. Earth Science Frontiers, 15(1): 242-249 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.01.030
      Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
      Ye, R. Y., 2015. Interaction of Surface Water and Groundwater in Yili-Gongnaisi River Valley (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208: 773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
      Zhao, J. C., Wei, B. H., Xiao, S. B., 2009. Stable Isotopic Characteristics of Atmospheric Precipitation from Yichang, Hubei. Tropical Geography, 29(6): 526-531 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5221.2009.06.004
      Zheng, T. L., Deng, Y. M., Wang, Y. X., et al., 2020. Microbial Sulfate Reduction Facilitates Seasonal Variation of Arsenic Concentration in Groundwater of Jianghan Plain, Central China. Science of the Total Environment, 735: 139327. https://doi.org/10.1016/j.scitotenv.2020.139327
      陈兴平, 邓云华, 张裕曾, 等, 2007. 湖北南洪村饮水砷含量及砷中毒调查. 中国地方病防治杂志, 22(4): 281-282. doi: 10.3969/j.issn.1001-1889.2007.04.016
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      郭欣欣, 2014. 江汉平原浅层含水层系统中砷释放与迁移过程研究(博士学位论文). 武汉: 中国地质大学.
      宋献方, 刘相超, 夏军, 等, 2007. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究. 中国科学(D辑), 37(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701011.htm
      王晶, 谢作明, 王佳, 等, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      杨素珍, 郭华明, 唐小惠, 等, 2008. 内蒙古河套平原地下水砷异常分布规律研究. 地学前缘, 15(1): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801032.htm
      叶人源, 2015. 新疆伊犁‒巩乃斯河谷地表水与地下水转化关系研究(硕士学位论文). 西安: 长安大学.
      赵家成, 魏宝华, 肖尚斌, 2009. 湖北宜昌地区大气降水中的稳定同位素特征. 热带地理, 29(6): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200906006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (559) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return