• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    Wang Zheng, Tong Dianjun, Gao Mingheng, Hu Chen, 2022. Development of Extensional Decollement Faults and Its Petroleum Implications in Wushi East Subsag, Beibuwan Basin. Earth Science, 47(7): 2509-2520. doi: 10.3799/dqkx.2022.154
    Citation: Wang Zheng, Tong Dianjun, Gao Mingheng, Hu Chen, 2022. Development of Extensional Decollement Faults and Its Petroleum Implications in Wushi East Subsag, Beibuwan Basin. Earth Science, 47(7): 2509-2520. doi: 10.3799/dqkx.2022.154

    Development of Extensional Decollement Faults and Its Petroleum Implications in Wushi East Subsag, Beibuwan Basin

    doi: 10.3799/dqkx.2022.154
    • Received Date: 2022-04-09
    • Publish Date: 2022-07-25
    • From the Early Paleocene to the end of the Oligocene, Wushi Sag of the Beibuwan Basin experienced multiple phases of extension. A group of extensional decollement faults formed during the 2nd phase of rifting, but their formation mechanism and evolution process are not clear. Based on the new high-quality 3-D seismic data obtained in the process of petroleum exploration, an in-depth analysis of the extensional decollement faults in the Wushi East subsag is conducted in this study. The results show that there are 7 extensional decollement faults (Fa‒Fg) in the Wushi East subsag, which are distributed in the near E-W or NE-SW direction. These decollement faults, together with north-dipping No.7 boundary fault, controlled sedimentation from the 1st Member of Liushagang Formation to the 1st Member of Weizhou Formation, which formed a huge rollover anticline. In terms of evolution, during the Early-Middle Eocene, the basin was a graben or half-graben controlled by the NE-SW No.7 boundary fault and other local small basement faults. The 3rd Member of Liushagang Formation strata was discretely distributed and was overlain by thick layer oil shale of the 2nd Member of Liushagang Formation. From the Late Eocene to the Late Oligocene, 1st Member of Liushagang Formation to the 1st Member of Weizhou Formation deposited in the basin, which was controlled by the oppositely dipping extensional decollement faults and the No.7 boundary fault. From the Early Miocene to the present, the basin changed into a sag basin. This study has depicted the geometry of extensional decollement structure which formed during the second episodic rift phase of Wushi East subsag, analyzed the growth and linkage pattern of decollement faults, and proposed the decollement faults upslope-ward migration model, which has a great significance for solving the problems of oil and gas migration, storage and preservation.

       

    • loading
    • Ai, N. P., Ren, J. Y., Qi, P., et al., 2009. The Redefinition and Geological Siginificance of Extensional Decollement Structure Systems in the Qikou Depression. Geotectonica et Metallogenia, 33(3): 343-351 (in Chinese with English abstract).
      Back, S., Strozyk, F., Kukla, P. A., et al., 2008. Three⁃ Dimensional Restoration of Original Sedimentary Geometries in Deformed Basin Fill, Onshore Brunei Darussalam, NW Borneo. Basin Research, 20(1): 99-117. https://doi.org/10.1111/j.1365⁃2117.2007.00343.x
      Bai, B., Kang, H. Q., Cheng, T., et al., 2016. Gravity Dcollement Structural System in Offshore Basins of Northeast Brazil. Marine Geology Frontiers, 32(4): 31-36 (in Chinese with English abstract).
      Fazlikhani, H., Back, S., 2015. The Influence of Differential Sedimentary Loading and Compaction on the Development of a Deltaic Rollover. Marine and Petroleum Geology, 59: 136-149. https://doi.org/10.1016/j.marpetgeo.2014.08.005
      Fazlikhani, H., Back, S., Kukla, P. A., et al., 2016. Interaction between Gravity-Driven Listric Normal Fault Linkage and Their Hanging-Wall Rollover Development: A Case Study from the Western Niger Delta, Nigeria. Geological Society, London, Special Publications, 439(1): 169-186. https://doi.org/10.1144/sp439.20
      Hou, G. W., Liu, H. F., Zuo, S. J., 2005. A Study of Distribution Characteristics of Petroleum in Niger Delta Basin and Their Controling Factors. Oil & Gas Geology, 26(3): 374-378 (in Chinese with English abstract).
      Hu, D. S., Deng, Y., Zhang, J. X., et al., 2016. Palaeogene Fault System and Hydrocarbon Accumulation in East Wushi Sag. Journal of Southwest Petroleum University (Science & Technology Edition), 38(4): 27-36 (in Chinese with English abstract).
      Hu, L., Li, C., Jin, Q. Y., et al., 2021. Experimental Analysis on Influence of Plastic Formation on Characteristics of Fault Development under Extensional Stress. Earth Science, 46(5): 1749-1757 (in Chinese with English abstract).
      Huang, B. J., Huang, H. T., Wu, G. X., et al., 2012. Geochemical Characteristics and Formation Mechanism of Eocene Lacustrine Organic⁃Rich Shales in the Beibuwan Basin. Acta Petrolei Sinica, 33(1): 25-31 (in Chinese with English abstract).
      Jackson, C. A. L., Larsen, E., 2009. Temporal and Spatial Development of a Gravity⁃Driven Normal Fault Array: Middle⁃Upper Jurassic, South Viking Graben, Northern North Sea. Journal of Structural Geology, 31(4): 388-402. https://doi.org/10.1016/j.jsg.2009.01.007
      Laubscher, H. P., 1988. Décollement in the Alpine System: An Overview. Geologische Rundschau, 77(1): 1-9. https://doi.org/10.1007/BF01848672
      Li, C. R., Zhang, G. C., Liang, J. S., et al., 2012. Characteristics of Fault Structure and Its Control on Hydrocarbons in the Beibuwan Basin. Acta Petrolei Sinica, 33(2): 195-203 (in Chinese with English abstract).
      Lei, B. H., 2012. Review of Methods with Quantitative Studies of Activity Intensity of the Growth Fault. Advances in Earth Science, 27(9): 947-956 (in Chinese with English abstract).
      Liu, J. B., Xia, B., Lü, B. F., et al., 2010. Comparative Analysis of Inversion Structure with Its Easily Confused Structures. Geoscience, 24(4): 744-748 (in Chinese with English abstract).
      Liu, X. F., Dong, Y. X., Wang, H., 2010. Antiformal Negative Flower Structure in Nanpu Sag, Bohai Bay Basin. Earth Science, 35(6): 1029-1034 (in Chinese with English abstract).
      Ma, X. Y., Suo, S. T., 1984. On Gliding Nappes and Multi⁃Level Detachment Structures in the Lithosphere. Acta Geologica Sinica, 58(3): 205-213 (in Chinese with English abstract).
      Man, X., Hu, D. S., Fan, C. W., et al., 2021. Study on the Origin of "Antiform Negative Flower Structure" and the Difference of Oil and Gas Enrichment Law in Wushi Sag. China Offshore Oil and Gas, 33(5): 32-39 (in Chinese with English abstract).
      Muraoka, H., Kamata, H., 1983. Displacement Distribution along Minor Fault Traces. Journal of Structural Geology, 5(5): 483-495. https://doi.org/10.1016/0191⁃8141(83)90054⁃8
      Ren, J. Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra⁃Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      Wang, H. R., Fu, G., Su, B. L., et al., 2018. A Method to Determine Preferential Pathways for Hydrocarbon Migration in "Lower Source Rock and Upper Reservoir" Combination and Its Application. Oil & Gas Geology, 39(6): 1237-1245 (in Chinese with English abstract).
      Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract).
      Xu, C. G., Fan, C. W., 2021. New Exploration Progress and Thinking of Offshore Large⁃Medium⁃Sized Oil and Gas Fields in the Western South China Sea. China Offshore Oil and Gas, 33(2): 13-25 (in Chinese with English abstract).
      Xue, Y. A., Zhao, M., Liu, X. J., 2021. Reservoir Characteristics and Controlling Factors of the Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin. Journal of Earth Science, 32(4): 919-926. https://doi.org/10.1007/s12583⁃021⁃1415⁃1
      Yang, X. B., Chen, Z. Y., Man, Y., et al., 2017. Sand Distribution Mechanism of Liushagang Formation in Eastern Wushi Area. Fault⁃Block Oil & Gas Field, 24(3): 342-345 (in Chinese with English abstract).
      Yue, P. S., 2012. Research of Petroleum Geology and Petroleum Resource Potential in Niger Delta Basin (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Zhang, D. D., Liu, C. Y., Huang, Y. J., 2013. Analysis on Decollement Structure of Qikou Sag and the Petroleum Geological Significance. Chinese Journal of Geology (Scientia Geologica Sinica), 48(1): 263-274 (in Chinese with English abstract).
      Zhang, J. L., Meng, Q. A., Zhang, C. H., et al., 2009. A Quantitative Study on the Growth of Boundary Faults of the Xujiaweizi Faulting Depression in the Songliao Basin. Earth Science Frontiers, 16(4): 87-96 (in Chinese with English abstract).
      艾能平, 任建业, 祁鹏, 等, 2009. 歧口凹陷伸展滑脱构造系统的厘定及其地质意义. 大地构造与成矿学, 33(3): 343-351. doi: 10.3969/j.issn.1001-1552.2009.03.003
      白博, 康洪全, 程涛, 等, 2016. 巴西东北部海域盆地重力滑脱构造体系特征. 海洋地质前沿, 32(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201604005.htm
      侯高文, 刘和甫, 左胜杰, 2005. 尼日尔三角洲盆地油气分布特征及控制因素. 石油与天然气地质, 26(3): 374-378. doi: 10.3321/j.issn:0253-9985.2005.03.019
      胡德胜, 邓勇, 张建新, 等, 2016. 乌石凹陷东区古近系断裂系统与油气成藏. 西南石油大学学报(自然科学版), 38(4): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201604004.htm
      胡林, 李才, 金秋月, 等, 2021. 伸展背景下塑性地层对断裂发育特征影响的实验分析. 地球科学, 46(5): 1749-1757. doi: 10.3799/dqkx.2020.137
      黄保家, 黄合庭, 吴国瑄, 等, 2012. 北部湾盆地始新统湖相富有机质页岩特征及成因机制. 石油学报, 33(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201002.htm
      李春荣, 张功成, 梁建设, 等, 2012. 北部湾盆地断裂构造特征及其对油气的控制作用. 石油学报, 33(2): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202004.htm
      雷宝华, 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209005.htm
      刘见宝, 夏斌, 吕宝凤, 等, 2010. 反转构造与其易混淆构造的对比分析. 现代地质, 24(4): 744-748. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004015.htm
      刘晓峰, 董月霞, 王华, 2010. 渤海湾盆地南堡凹陷的背形负花状构造. 地球科学, 35(6): 1029-1034. doi: 10.3799/dqkx.2010.116
      马杏垣, 索书田, 1984. 论滑覆及岩石圈内多层次滑脱构造. 地质学报, 58(3): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198403003.htm
      满晓, 胡德胜, 范彩伟, 等, 2021. 乌石凹陷"背形负花构造"成因及油气富集规律差异性研究. 中国海上油气, 33(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202105004.htm
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水‒超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      王浩然, 付广, 宿碧霖, 等, 2018. 下生上储式油气运移优势路径确定方法及其应用. 石油与天然气地质, 39(6): 1237-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806014.htm
      王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916-928. doi: 10.3799/dqkx.2020.381
      徐长贵, 范彩伟, 2021. 南海西部近海大中型油气田勘探新进展与思考. 中国海上油气, 33(2): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202102002.htm
      杨希冰, 谌志远, 满勇, 等, 2017. 乌石东区流沙港组地层断裂控砂机制. 断块油气田, 24(3): 342-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703011.htm
      岳鹏升, 2012. 尼日尔三角洲盆地地质特征及油气资源潜力研究(硕士学位论文). 西安: 长安大学.
      张东东, 刘池洋, 黄翼坚, 2013. 歧口凹陷滑脱构造剖析及对油气地质意义. 地质科学, 48(1): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201301018.htm
      张军龙, 蒙启安, 张长厚, 等, 2009. 松辽盆地徐家围子断陷边界断裂生长过程的定量分析. 地学前缘, 16(4): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (1313) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return