• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Zhang Yongshuang, Li Jinqiu, Ren Sanshao, Wu Ruian, Bi Junbo, 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956. doi: 10.3799/dqkx.2022.155
    Citation: Zhang Yongshuang, Li Jinqiu, Ren Sanshao, Wu Ruian, Bi Junbo, 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956. doi: 10.3799/dqkx.2022.155

    Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides

    doi: 10.3799/dqkx.2022.155
    • Received Date: 2021-09-15
    • Publish Date: 2022-06-25
    • Clayey altered rock is a special geological body with poor engineering geological properties formed under hydrothermal action or hydrothermal action after the magmatic period. Based on field geological survey, clay mineral identification, and physical mechanics test analysis, the formation conditions, regional distribution characteristics, geological characteristics and the criterion of alteration degree of clayey altered rocks in the Sichuan-Tibet traffic corridor are described. Taking Baige landslide as an example, the sliding promotion of clayey altered rock on large-scale landslides are discussed. The results show that the regional distribution of clayey altered rocks is controlled by active faults, hydrothermal action and lithology. The clayey altered rocks often develop along intrusive dikes, fault zones, concentrated joint zones of magmatic rocks, and contact zones between intrusive rock mass and other rock formation. According to the alteration coefficient, the degree of alteration can be divided into four grades: very low alteration, low alteration, medium alteration and high alteration. In alternating wet and dry conditions and relaxation conditions, the altered rock is easy to disintegrate and soften. The medium-high altered rock mass usually has low shearing strength. The promoting effect of clayey altered rock on landslide is mainly reflected in three aspects: strength weakening effect, rock mass structure deterioration effect and instability hysteresis effect, which is an important factor in promoting the instability of slopes and large-scale landslides in deep-cut valley slopes in tectonic melange belts.

       

    • loading
    • Dolejš, D., Wagner, T., 2008. Thermodynamic Modeling of Non-Ideal Mineral-Fluid Equilibria in the System Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at Elevated Temperatures and Pressures: Implications for Hydrothermal Mass Transfer in Granitic Rocks. Geochimica et Cosmochimica Acta, 72(2): 526-553. https://doi.org/10.1016/j.gca.2007.10.022
      Fedo, C., Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
      Guo, J., Xu, M., Zhang, Q., 2009. Study on Characteristics and Engineering Properties of Altered Granite. Gansu Water Conservancy and Hydropower Technology, 45(9): 27-42(in Chinese with English abstract).
      Hu, W., Scaringi, G., Xu, Q., et al., 2018. Suction and Rate-Dependent Behaviour of a Shear-Zone Soil from a Landslide in a Gently-Inclined Mudstone-Sandstone Sequence in the Sichuan Basin, China. Engineering Geology, 237: 1-11. https://doi.org/10.1016/j.enggeo.2018.02.005
      Hu, S. X., Ye, Y., Fang, C. Q., 2004. The Significance of Petrology of Metasomatic Alteration and Prospecting. Geological Publishing Press, Beijing(in Chinese).
      Jamali, S., Wittig, V., Börner, J., et al., 2019. Application of High Powered Laser Technology to Alter Hard Rock Properties towards Lower Strength Materials for more Efficient Drilling, Mining, and Geothermal Energy Production. Geomechanics for Energy and the Environment, 20: 100112. https://doi.org/10.1016/j.gete.2019.01.001
      Liu, L. J., 2017. Altered Mineral Petrologic Characteristics and Genetic Analysis of Saccharoidal Compresso-Crushed Zone in Dam Site of Yebatan Hydropower Station (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Li, W. Q., 1988. Research on Petrology of the Dam Area of Ertan Hydropower Plant. Design of Hydroelectric Power Station, 4(1): 55-63(in Chinese with English abstract).
      Liu, K. Y., Shao, Z. P., 1989. Study on Mechanical Properties of Rock Mass of Ertan Hydroelectric Plant. Design of Hydroelectric Power Station, 5(1): 1-14(in Chinese with English abstract).
      Machek, M., Roxerová, Z., Janoušek, V., et al., 2013. Petrophysical and Geochemical Constraints on Alteration Processes in Granites. Studia Geophysica et Geodaetica, 57(4): 710-740. https://doi.org/10.1007/s11200-013-0923-6
      Meller, C., Kontny, A., Kohl, T., 2014. Identification and Characterization of Hydrothermally Altered Zones in Granite by Combining Synthetic Clay Content Logs with Magnetic Mineralogical Investigations of Drilled Rock Cuttings. Geophysical Journal International, 199(1): 465-479. https://doi.org/10.1093/gji/ggu278
      Miao, Z., Shen, J. H., Li, W. G., et al., 2014. Argillization and Mechanism Characteristics of Altered-Dolerite in Dagangshan Hydropower Station. Journal of Engineering Geology, 22(1): 130-136(in Chinese with English abstract).
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract).
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      Savage, D., Cave, M. R., Milodowski, A. E., et al., 1987. Hydrothermal Alteration of Granite by Meteoric Fluid: An Example from the Carnmenellis Granite, United Kingdom. Contributions to Mineralogy and Petrology, 96(3): 391-405. https://doi.org/10.1007/bf00371257
      Simon, K., 1990. Hydrothermal Alteration of Variscan Granites, Southern Schwarzwald, Federal Republic of Germany. Contributions to Mineralogy and Petrology, 105(2): 177-196. https://doi.org/10.1007/bf00678985
      Wei, W., Shen, J. H., Miao, Z., et al., 2012. Influence Analysis of Weathering and Altering for Physical and Mechanical Characteristics of Granite-Porphyry. Journal of Engineering Geology, 20(4): 599-506(in Chinese with English abstract).
      Wei, W., Shen, J. H., Zhu, H. P., et al., 2015. Comparative Study on Engineering Characteristics of Clay Altered-Rock and Fault Argillaceous Materials of Mengdigou Hydropower Station. Yangtze River, 46(13): 29-32(in Chinese with English abstract).
      Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784(in Chinese with English abstract).
      Wang, X. D., Fu, X. M., 2008. Unaxial Compressive Rheology Testing for Rheological Properties of Rotten Rock. Journal of Engineering Geology, 16(1): 27-31(in Chinese with English abstract).
      Xu, C. S., Wang, X., Du, X. L., et al., 2017. Experimental Study on Residual Strength and Index of Shear Strength Characteristics of Different Clay Soils. Chinese Journal of Geotechnical Engineering, 39(3): 436-443(in Chinese with English abstract).
      Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 129-146 (in Chinese with English abstract).
      Xu, Y. J., Ma, H. C., Peng, S. Y., 2014. Study on Identification of Altered Rock in Hyperspectral Imagery Using Spectrum of Field Object. Ore Geology Reviews, 56: 584-595. https://doi.org/10.1016/j.oregeorev.2013.07.004
      Yan, S. X., Li, X., Zhang, B., 2005. A Study on the Correlation Relationships between Smectite Contents and Spectral Absorption Indices of Swelling Soils. Journal of Remote Sensing, 9(3): 328-336(in Chinese with English abstract).
      Yang, C. L., Wang, S. L., Wang, Q. Q., et al., 2019. Analysis of Rock Alteration Characteristics in Dam Site Area of a Hydropower Station in Tibet. Journal of Water Resources and Architectural Engineering, 17(6): 93-98(in Chinese with English abstract).
      Yang, G. L., Huang, R. Q., Wang, J. Z., et al., 2006. Study on the Pore Characteristics and the Weakness of Altered-Rock for a Project. Journal of Mineralogy and Petrology, 26(4): 111-115(in Chinese with English abstract).
      Ye, T. Q., 1991. Research on the Characteristic of Pb-Zn Mine Ore and the Metallogenesis System in Nujiang-Lancangjiang-Jinshajiang Region. Beijing Press of Science and Technology, Beijing(in Chinese).
      Yi, S. J., Cui, P., Wu, C. H., et al., 2021. Control Effects of Suture Zones on Distribution of Soft Rock and Its Engineering Influence along Sichuan-Tibet Railway Corridor. Journal of Engineering Geology, 29(2): 275-288(in Chinese with English abstract).
      Yoshida, H., Metcalfe, R., Seida, Y., et al., 2009. Retardation Capacity of Altered Granitic Rock Distributed along Fractured and Faulted Zones in the Orogenic Belt of Japan. Engineering Geology, 106(3-4): 116-122. https://doi.org/10.1016/j.enggeo.2009.03.008
      Zeng, Q. G., Wang, B. D., Xi, L. L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract).
      Zhai, Y. S., 1999. Regional Metallogeny. Geological Publishing House, Beijing(in Chinese).
      Zhang, Y. S., Ba, R. J., Ren, S. S., et al., 2020. An Analysis of Geo-Mechanism of the Baige Landslide in Jinsha River, Tibet. Geology in China, 47(6): 1637-1645(in Chinese with English abstract).
      Zhang, Y. S., Guo, C. B., Li, X. Q., et al., 2021. Key Problems on Hydro-Engineering-Environmental Geology along the Sichuan-Tibet Railway Corridor: Current Status and Development Direction. Hydrogeology & Engineering Geology, 48(5): 1-12(in Chinese with English abstract).
      Zhang, Y. S., Qu, Y. X., Liu, J. R., et al., 2007. Engineering Geological Research on Altered Rocks in the Area of NW Yunnan along Yunnan-Tibet Railway Line. Chinese Journal of Geotechnical Engineering, 29(4): 531-536(in Chinese with English abstract).
      Zhao, Z. T., Shen, J. H., Zhu, H. P., et al., 2016. Integrated Deformation Modulus of Intensive Altered Rock Zone at Meng Digou Hydropower Station. Journal of Engineering Geology, 24(3): 459-464(in Chinese with English abstract).
      郭健, 许模, 张强, 2009. 蚀变花岗岩特征及工程特性研究. 甘肃水利水电技术, 45(9): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSJ200909013.htm
      胡受奚, 叶瑛, 方长泉, 2004. 交代蚀变岩岩石学及找矿意义. 北京: 地质出版社.
      刘恋嘉, 2017. 叶巴滩水电站坝址区"砂糖状"挤压破碎带蚀变矿物岩石学特征及成因分析(硕士学位论文). 成都: 成都理工大学.
      酆文清, 1988. 二滩水电站坝区岩石学研究. 水电站设计, 4(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ198801005.htm
      刘克远, 邵宗平, 1989. 二滩水电站岩体力学特性研究. 水电站设计, 5(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ198901000.htm
      苗朝, 沈军辉, 李文纲, 等, 2014. 大岗山坝区辉绿岩脉蚀变泥化特征及机理研究. 工程地质学报, 22(1): 130-136. doi: 10.3969/j.issn.1004-9665.2014.01.018
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
      魏伟, 沈军辉, 苗朝, 等, 2012. 风化、蚀变对花岗斑岩物理力学特性影响分析. 工程地质学报, 20(4): 599-506. doi: 10.3969/j.issn.1004-9665.2012.04.017
      魏伟, 沈军辉, 祝华平, 等, 2015. 黏土化蚀变岩与断层泥质物的工程性质对比研究: 以孟底沟水电站工程为例. 人民长江, 46(13): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201513008.htm
      王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083
      王旭东, 付小敏, 2008. 蚀变岩的蠕变特性研究. 工程地质学报, 16(1): 27-31. doi: 10.3969/j.issn.1004-9665.2008.01.006
      许成顺, 王馨, 杜修力, 等, 2017. 不同黏性土的残余强度及其抗剪强度指标特性研究. 岩土工程学报, 39(3): 436-443. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703009.htm
      许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 129-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
      燕守勋, 李兴, 张兵, 2005. 蒙皂石含量与膨胀土光谱吸收参量相关关系研究. 遥感学报, 9(3): 328-336 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200503015.htm
      杨成龙, 王森林, 王钦权, 等, 2019. 西藏某水电站坝址区岩石蚀变特征分析. 水利与建筑工程学报, 17(6): 93-98. doi: 10.3969/j.issn.1672-1144.2019.06.017
      杨根兰, 黄润秋, 王奖臻, 等, 2006. 某工程蚀变岩孔隙特征及其软弱程度研究. 矿物岩石学, 26(4): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200604018.htm
      叶同庆, 1991. 怒江、澜沧江、金沙江地区铅锌矿床特征和成矿系列. 北京: 北京科学技术出版社.
      易树健, 崔鹏, 伍纯昊, 等, 2021. 川藏铁路廊道板块缝合带对软岩分布的控制效应及其工程影响. 工程地质学报, 29(2): 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102001.htm
      曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
      翟裕生, 1999. 区域成矿学. 北京: 地质出版社.
      张永双, 巴仁基, 任三绍, 等, 2020. 中国西藏金沙江白格滑坡的地质成因分析. 中国地质, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm
      张永双, 郭长宝, 李向全, 等, 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105001.htm
      张永双, 曲永新, 刘景儒, 等, 2007. 滇藏铁路滇西北段蒙脱石化蚀变岩的工程地质研究. 岩土工程学报, 29(4): 531-536. doi: 10.3321/j.issn:1000-4548.2007.04.010
      赵梓彤, 沈军辉, 祝华平, 等, 2016. 孟底沟水电站蚀变岩密集带综合变形模量研究. 工程地质学报, 24(3): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (1303) PDF downloads(117) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return