• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    Guo Wei, Xu Guoqiang, Liu Baojun, Xiang Xuhong, Liu Dongqing, Zhang Bo, 2022. Structure-Sedimentary Response Relationship of Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2433-2453. doi: 10.3799/dqkx.2022.156
    Citation: Guo Wei, Xu Guoqiang, Liu Baojun, Xiang Xuhong, Liu Dongqing, Zhang Bo, 2022. Structure-Sedimentary Response Relationship of Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2433-2453. doi: 10.3799/dqkx.2022.156

    Structure-Sedimentary Response Relationship of Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin

    doi: 10.3799/dqkx.2022.156
    • Received Date: 2021-09-26
    • Publish Date: 2022-07-25
    • Based on 3D seismic data, drilling and logging data, the tectonic evolution and its controlled sedimentary filling process of Wenchang Formation in Baiyun Sag were studied in detail by using new methods such as the restoration of original form structure section, enhanced seismic facies analysis and seismic scanning interpretation of sand body in order to explore the structure-sedimentary response relationship of faulted lake basin. The study shows that in response to the activity process of "weak-very strong-relatively strong-weak" of sag-controlling faults, Baiyun Sag experienced four tectonic evolution stages during the Wenchang Formation: initial fault depression stage (WCSQ1), early stage of strong fault depression (WCSQ2), late stage of strong fault depression (WCSQ3) and weak fault depression stage (WCSQ4, WCSQ5). Correspondingly, Baiyun Main Sag underwent the sedimentary evolution processes of fluvial-lacustrine, ultra-deep lake occurrence, ultra-deep lake filling, deep lake-shallow lake occurrence. The northern gentle slope zone located on the tilting side of rotating fault block mainly developed a fluvial-shallow lake transitional environment and a braided river delta depositional system of large-medium scale. The southern steep slope zone located on the plunging side of rotating fault block mainly developed a semi-deep lacustrine to deep lacustrine environment and a nearshore subaqueous fan-fan delta depositional system. The center of lake basin mainly developed a deep lake-ultra-deep lake environment and argillaceous deposits. The deposits of turbidite fan were developed around the deep lake. However, the Baiyun East Sag appeared as a landform of multiple uplift-depression formed by steep slope and magmatic underplating, and mainly developed small-scale inshore subaqueous fan-fan delta sedimentary system with volcaniclastic sediments. The porosity of sand bodies of Wenchang Formation was jointly controlled by the activity intensity of sag-controlling faults and magma, provenance system and paleogeographic characteristics of secondary depressions in Baiyun Sag.

       

    • loading
    • Catuneanu, O., Abreu, V., Bhattacharya, J. P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth⁃Science Reviews, 92(1-2): 1-33. https://doi.org/10.1016/j.earscirev.2008.10.003
      Cui, Y. C., Cao, L. C., Qiao, P. J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U⁃Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      Ge, J. W., Zhu, X. M., Zhang, X. T., et al., 2018. Tectono⁃Sedimentation Model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin. Journal of China University of Mining & Technology, 47(2): 308-322 (in Chinese with English abstract).
      Hou, Y. L., Shao, L., Qiao, P. J., et al., 2020. Provenance of the Eocene⁃Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28 (in Chinese with English abstract).
      Li, C. H., Wang, J. H., Liu, B. J., et al., 2014. Types and Distribution of the Paleogene Sedimentary Facies in Baiyun Depression of Pearl River Mouth Basin. Acta Sedimentologica Sinica, 32(6): 1162-1170 (in Chinese with English abstract).
      Li, H. B., Zheng, J. Y., Pang, X., et al., 2020. Structural Patterns and Controlling Factors of Differential Detachment in the Northern Continental Margin of the South China Sea: Taking Baiyun⁃Liwan Deep Water Area in the Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 32(4): 24-35 (in Chinese with English abstract).
      Li, Z. D., Yu, P., Shao, B. Y., et al., 2015. Response Analysis of Sedimentary Filling Evolution and Tectonic Activity in Complicated Faulted Basin: An Example of Middle Rift Belt in Hailar⁃Tamtsag Basin. Journal of China University of Mining & Technology, 44(5): 853-860 (in Chinese with English abstract).
      Liao, J. H., Wu, K. Q., Er, C., 2022. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Science, 47(7): 2454-2467 (in Chinese with English abstract).
      Lin, C. S., Pan, Y. L., Xiao, J. X., et al., 2000. Structural Slope⁃Break Zone: Key Concept for Stratigraphic Sequence Analysis and Petroleum Forecasting in Fault Subsidence Basins. Earth Science, 25(3): 260-266 (in Chinese with English abstract).
      Liu, B. B., Yu, X. H., Wu, J. F., et al., 2015. Research on Half⁃Graben Types and Sedimentary Filling Modes of Northern Continental Margin Basin of the South China Sea. Journal of China University of Mining & Technology, 44(3): 498-507 (in Chinese with English abstract).
      Liu, B. J., Pang, X., Wang, J. H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep⁃Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract).
      Liu, B. J., Pang, X., Yan, C. Z., et al., 2011. An Analysis of Depositional Evolution and Its Controls in Baiyun Deep⁃Water Area, Pearl River Mouth Basin. China Offshore Oil and Gas, 23(1): 19-25 (in Chinese with English abstract).
      Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep⁃Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract).
      Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Structural Diversity of Fault Depressions under the Background of Preexisting Subduction Continental Margin, Pearl River Mouth Basin, China. Petroleum Exploration and Development, 48(4): 1069-1080 (in Chinese with English abstract).
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      Ren, J. Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra⁃Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo⁃Drainage System Evolution. Journal of Palaeogeography (Chinese Edition), 21(2): 216-231 (in Chinese with English abstract).
      Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting⁃ Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      Wang, C., Su, Q. L., Xie, X. N., et al., 2021. Characteristics and Mechanisms of Shallow Igneous Intrusions and Their Implications on Hydrocarbon Geology in the Baiyun Sag. Earth Science, 47(2): 505-517 (in Chinese with English abstract).
      Wang, J. H., Pang, X., Liu, B. J., et al., 2018. The Baiyun and Liwan Sags: Two Supradetachment Basins on the Passive Continental Margin of the Northern South China Sea. Marine and Petroleum Geology, 95: 206-218. https://doi.org/10.1016/j.marpetgeo.2018.05.001
      Wang, Y. Y., Xu, G. Q., Pang, X., et al., 2019. A Method for Restoring Sedimentary Sequence Original Structural Profiles: A Case Study of Miocene Strata from the Northern Continental Slope of the South China Sea. Marine and Petroleum Geology, 103: 294-305. https://doi.org/10.1016/j.marpetgeo.2019.01.036
      Wu, X. J., Pang, X., He, M., et al., 2014. Structural Style and Dynamical Mechanism during Rifting in the Passive⁃Continental⁃Margin Basins, the Northern South China Sea. China Offshore Oil and Gas, 26(3): 43-50 (in Chinese with English abstract).
      Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583⁃020⁃1083⁃6
      Xu, G. Q., Haq, B. U., 2022. Seismic Facies Analysis: Past, Present and Future. Earth⁃Science Reviews, 224: 103876. https://doi.org/10.1016/j.earscirev.2021.103876
      Xu, G. Q., Pang, X., 2021. Sequence⁃Stratigraphic Dynamics: Variations of Genetic Stratigraphic Units Driven by Basin Subsidence. Global and Planetary Change, 201: 103482. https://doi.org/10.1016/j.gloplacha.2021.103482
      Xu, G. Q., Zhang, L., Pang, X., et al., 2021. New Method for the Reconstruction of Sedimentary Systems Including Lithofacies, Environments, and Flow Paths: A Case Study of the Xisha Trough Basin, South China Sea. Marine and Petroleum Geology, 133: 105268. https://doi.org/10.1016/j.marpetgeo.2021.105268
      Ye, Q., 2019. The Late Mesozoic Structure Systems in the Northern South China Sea Margin: Geodynamics and Their Influence on the Cenozoic Structures in the Pearl River Mouth Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth⁃Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
      Zeng, Z. W., 2020. Source⁃to⁃Sink (S2S) System Analysis of the Paleogene in the Pearl River Mouth Basin, Northern South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract).
      Zhang, G. C., 2010. Tectonic Evolution of Deepwater Area of Northern Continental Margin in South China Sea. Acta Petrolei Sinica, 31(4): 528-533, 541 (in Chinese with English abstract).
      Zhao, Y. H., 2016. Basin Architecture and Its Evolution Mechanism of Baiyun Sag, Northern Margin of the South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhu, H. T., Li, S., Liu, H. R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: An Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-372 (in Chinese with English abstract).
      崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U⁃Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      葛家旺, 朱筱敏, 张向涛, 等, 2018. 珠江口盆地陆丰凹陷文昌组构造‒沉积演化模式. 中国矿业大学学报, 47(2): 308-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802012.htm
      侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世‒中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002003.htm
      李成海, 王家豪, 柳保军, 等, 2014. 珠江口盆地白云凹陷古近系沉积相类型. 沉积学报, 32(6): 1162-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201406018.htm
      李洪博, 郑金云, 庞雄, 等, 2020. 南海北部陆缘差异拆离作用结构样式与控制因素: 以珠江口盆地白云‒荔湾深水区为例. 中国海上油气, 32(4): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004003.htm
      李占东, 于鹏, 邵碧莹, 等, 2015. 复杂断陷盆地沉积充填演化与构造活动的响应分析: 以海拉尔‒塔木察格盆地中部断陷带为例. 中国矿业大学学报, 44(5): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201505011.htm
      廖计华, 吴克强, 耳闯, 2022. 珠江口盆地白云凹陷深层储层特征与有效储层控制因素. 地球科学, 47(7): 2454-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202207012.htm
      林畅松, 潘元林, 肖建新, 等, 2000. "构造坡折带": 断陷盆地层序分析和油气预测的重要概念. 地球科学, 25(3): 260-266. http://www.earth-science.net/article/id/936
      刘蓓蓓, 于兴河, 吴景富, 等, 2015. 南海北部陆缘盆地半地堑类型及沉积充填模式. 中国矿业大学学报, 44(3): 498-507. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503015.htm
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区沉积充填演化及控制因素分析. 中国海上油气, 23(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201101003.htm
      庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
      庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下珠江口盆地断陷结构的多样性. 石油勘探与开发, 48(4): 1069-1080.
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水‒超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张‒破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      望畅, 孙启良, 解习农, 等, 2022. 白云凹陷浅成岩浆侵入体发育特征、成因及油气地质意义. 地球科学, 47(2): 505-517. doi: 10.3799/dqkx.2021.053
      吴湘杰, 庞雄, 何敏, 等, 2014. 南海北部被动陆缘盆地断陷期结构样式和动力机制. 中国海上油气, 26(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403007.htm
      叶青, 2019. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约(博士学位论文). 武汉: 中国地质大学.
      曾智伟, 2020. 南海北部珠江口盆地古近纪源‒汇系统耦合研究(博士学位论文). 武汉: 中国地质大学.
      曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123
      张功成, 2010. 南海北部陆坡深水区构造演化及其特征. 石油学报, 31(4): 528-533, 541. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004001.htm
      赵阳慧, 2016. 南海北部陆缘白云凹陷盆地构型及其形成演化机制(博士学位论文). 武汉: 中国地质大学.
      朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-372. doi: 10.3799/dqkx.2016.028
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (1175) PDF downloads(117) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return