• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Luo Litao, Wang Yejian, Cai Yiyang, Dong Chuanqi, Han Xiqiu, 2024. Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise. Earth Science, 49(1): 224-237. doi: 10.3799/dqkx.2022.161
    Citation: Luo Litao, Wang Yejian, Cai Yiyang, Dong Chuanqi, Han Xiqiu, 2024. Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise. Earth Science, 49(1): 224-237. doi: 10.3799/dqkx.2022.161

    Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise

    doi: 10.3799/dqkx.2022.161
    • Received Date: 2022-03-15
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Hydrothermal tubeworms biomineralization is widely developed in seafloor hydrothermal field, but the processes of mineralization, weathering and oxidation, as well as the controlling factors are poorly understood. In this paper, we use a detailed mineralogy observation and elemental in situ analysis methods to study mineralized worm-tubes from hydrothermal fields on the East Pacific Rise. The results show that the samples have a multilayered mineralization structure dominated by colloform pyrite and are classified into two types of fast (F-type) and slow mineralization (S-type). Compared with the "S-type", the "F-type" has thicker tube walls, fewer concentric layers, smaller gaps, and uniform thickness. This is mainly influenced by the rate of mineral precipitation, i.e., the rapid precipitation of minerals accelerates worm tube growth and mineralization. In addition, the distribution of framboidal pyrite on the outer layers of "F-type" worm-tube wall suggests that the directional growth of nano-micron crystalline sulfide minerals is an important intermediate pathway for the formation of the colloform pyrite bands. The "S-type " is characterized by a gradual increase in oxidation and a gradual thinning of colloform pyrite bands from the inside to the outside, indicating that the sample was both affected by the oxidation of late low-temperature, Fe-Si-rich hydrothermal fluids and low-temperature seawater weathering. This study provides a new insight into understanding the mineralization mechanism of worm-tubes from modern seafloor hydrothermal systems.

       

    • loading
    • Auclair, G., Fouquet, Y., Bohn, M., 1987. Distribution of Selenium in High-Temperature Hydrothermal Sulfide Deposits at 13° North, East Pacific Rise. The Canadian Mineralogist, 25(4): 577-587.
      Barrie, C. D., Boyce, A. J., Boyle, A. P., et al., 2009. Growth Controls in Colloform Pyrite. American Mineralogist, 94(4): 415-429. https://doi.org/10.2138/am.2009.3053
      Beaulieu, S. E., Szafranski, K., 2020. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields, Version 3.4. https://vents-data.interridge.org/ (accessed December 24, 2020)
      Benning, L. G., Wilkin, R. T., Barnes, H. L., 2000. Reaction Pathways in the Fe-S System below 100 ℃. Chemical Geology, 167(1-2): 25-51. https://doi.org/10.1016/S0009-2541(99)00198-9
      Brett, R., Jr Evans, H. T., Jr Gibson, E. K., et al., 1987. Mineralogical Studies of Sulfide Samples and Volatile Concentrations of Basalt Glasses from the Southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 92(B11): 11373-11379. https://doi.org/10.1029/jb092ib11p11373
      Cook, T. L., Stakes, D. S., 1995. Biogeological Mineralization in Deep-Sea Hydrothermal Deposits. Science, 267(5206): 1975-1979. https://doi.org/10.1126/science.267.5206.1975
      Fallon, E. K., Petersen, S., Brooker, R. A., et al., 2017. Oxidative Dissolution of Hydrothermal Mixed-Sulphide Ore: An Assessment of Current Knowledge in Relation to Seafloor Massive Sulphide Mining. Ore Geology Reviews, 86: 309-337. https://doi.org/10.1016/j.oregeorev.2017.02.028
      Georgieva, M. N., Little, C. T. S., Ball, A. D., et al., 2015. Mineralization of Alvinella Polychaete Tubes at Hydrothermal Vents. Geobiology, 13(2): 152-169. https://doi.org/10.1111/gbi.12123
      Georgieva, M. N., Little, C. T. S., Maslennikov, V. V., et al., 2021. The History of Life at Hydrothermal Vents. Earth-Science Reviews, 217: 103602. https://doi.org/10.1016/j.earscirev.2021.103602
      Guo, Z. K., Chen, C., Tao, C. H., et al., 2021. Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation. Earth Science, 46(2): 729-742 (in Chinese with English abstract).
      Halbach, M., Halbach, P., Lüders, V., 2002. Sulfide-Impregnated and Pure Silica Precipitates of Hydrothermal Origin from the Central Indian Ocean. Chemical Geology, 182(2-4): 357-375. https://doi.org/10.1016/S0009-2541(01)00323-0
      Han, Y. R., Zhang, D. S., Wang, C. S., et al., 2021. Out of the Pacific: A New Alvinellid Worm (Annelida: Terebellida) from the Northern Indian Ocean Hydrothermal Vents. Frontiers in Marine Science, 8: 669918. https://doi.org/10.3389/fmars.2021.669918
      Hannington, M. D., De Ronde, C. E. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. Economic Geology, 100(2): 111-159. https://doi.org/10.5382/AV100.06
      Haymon, R. M., Kastner, M., 1981. Hot Spring Deposits on the East Pacific Rise at 21°N: Preliminary Description of Mineralogy and Genesis. Earth and Planetary Science Letters, 53(3): 363-381. https://doi.org/10.1016/0012-821X(81)90041-8
      Humphris, S. E., Klein, F., 2018. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. Annual Review of Marine Science, 10: 315-343. https://doi.org/10.1146/annurev-marine-121916-063233
      Jamieson, J. W., Gartman, A., 2020. Defining Active, Inactive, and Extinct Seafloor Massive Sulfide Deposits. Marine Policy, 117: 103926. https://doi.org/10.1016/j.marpol.2020.103926
      Juniper, S. K., Thompson, J. A. J., Calvert, S. E., et al., 1986. Accumulation of Minerals and Trace Elements in Biogenic Mucus at Hydrothermal Vents. Deep Sea Research Part A: Oceanographic Research Papers, 33(3): 339-347. https://doi.org/10.1016/0198-0149(86)90095-6
      Juniper, S. K., Sarrazin, J., 1995. Interaction of Vent Biota and Hydrothermal Deposits: Present Evidence and Future Experimentation. In: Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., et al., eds., Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Washington, D. C., 178-193. https://doi.org/10.1029/GM091p0178
      Le Bris, N., Gaill, F., 2007. How does the Annelid Alvinella Pompejana Deal with an Extreme Hydrothermal Environment? Reviews in Environmental Science and Bio/Technology, 6: 197-221. https://doi.org/10.1007/s11157-006-9112-1
      Le Bris, N., Zbinden, M., Gaill, F., 2005. Processes Controlling the Physico-Chemical Micro-Environments Associated with Pompeii Worms. Deep Sea Research Part I: Oceanographic Research Papers, 52(6): 1071-1083. https://doi.org/10.1016/j.dsr.2005.01.003
      Li, J. T., Cui, J. M., Yang, Q. H., et al., 2017. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Frontiers in Microbiology, 8: 1378. https://doi.org/10.3389/fmicb.2017.01378
      Lonsdale, P., 1983. Overlapping Rift Zones at the 5.5°S Offset of the East Pacific Rise. Journal of Geophysical Research: Solid Earth, 88(B11): 9393-9406. https://doi.org/10.1029/jb088ib11p09393
      Luo, H. M., Han, X. Q., Wang, Y. J., et al., 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138 (in Chinese with English abstract).
      MacDonald, K. C., Fox, P. J., Miller, S., et al., 1992. The East Pacific Rise and Its Flanks 8-18° N: History of Segmentation, Propagation and Spreading Direction Based on SeaMARC Ⅱ and Sea Beam Studies. Marine Geophysical Researches, 14(4): 299-344. https://doi.org/10.1007/BF01203621
      Maginn, E. J., Little, C. T. S., Herrington, R. J., et al., 2002. Sulphide Mineralisation in the Deep Sea Hydrothermal Vent Polychaete, Alvinella Pompejana: Implications for Fossil Preservation. Marine Geology, 181(4): 337-356. https://doi.org/10.1016/S0025-3227(01)00196-7
      Martin, W., Baross, J., Kelley, D., et al., 2008. Hydrothermal Vents and the Origin of Life. Nature Reviews Microbiology, 6(11): 805-814. https://doi.org/10.1038/nrmicro1991
      Nasdala, L., Witzke, T., Ullrich, B., et al., 1998. Gordaite [Zn4Na(OH)6(SO4)Cl·6H2O]: Second Occurrence in the Juan de Fuca Ridge, and New Data. American Mineralogist, 83(9-10): 1111-1116. https://doi.org/10.2138/am-1998-9-1020
      Nozaki, T., Ishibashi, J., Shimada, K., et al., 2016. Rapid Growth of Mineral Deposits at Artificial Seafloor Hydrothermal Vents. Scientific Reports, 6: 22163. https://doi.org/10.1038/srep22163
      Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001
      Peng, X. T., Zhou, H. Y., Tang, S., et al., 2008. Early-Stage Mineralization of Hydrothermal Tubeworms: New Insights into the Role of Microorganisms in the Process of Mineralization. Chinese Science Bulletin, 53(2): 251-261. https://doi.org/10.1007/s11434-007-0517-1
      Pester, N. J., Rough, M., Ding, K., et al., 2011. A New Fe/Mn Geothermometer for Hydrothermal Systems: Implications for High-Salinity Fluids at 13°N on the East Pacific Rise. Geochimica et Cosmochimica Acta, 75(24): 7881-7892. https://doi.org/10.1016/j.gca.2011.08.043
      Rickard, D., Luther, G. W., 1997. Kinetics of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions between 25 and 125 ℃: The Mechanism. Geochimica et Cosmochimica Acta, 61(1): 135-147. https://doi.org/10.1016/S0016-7037(96)00322-5
      Taylor, K. G., MacQuaker, J. H. S., 2000. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131(1-2): 77-86. https://doi.org/10.1016/S0037-0738(00)00002-6
      Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. Journal of Geophysical Research: Solid Earth, 100(B7): 12527-12555. https://doi.org/10.1029/95jb00610
      Toner, B. M., Rouxel, O., Santelli, C. M., et al., 2008. Sea-Floor Weathering of Hydrothermal Chimney Sulfides at the East Pacific Rise 9°N: Chemical Speciation and Isotopic Signature of Iron Using X-Ray Absorption Spectroscopy and Laser Ablation MCICP-MS. Geochimica et Cosmochimica Acta, 72: A951.
      Wang, Y. J., Han, X. Q., Petersen, S., et al., 2017. Mineralogy and Trace Element Geochemistry of Sulfide Minerals from the Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84: 1-19. https://doi.org/10.1016/j.oregeorev.2016.12.020
      Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019GC008515
      Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4): Q04008. https://doi.org/10.1029/2003GC000623
      Zbinden, M., Le Bris, N., Compère, P., et al., 2003. Mineralogical Gradients Associated with Alvinellids at Deep-Sea Hydrothermal Vents. Deep Sea Research Part I: Oceanographic Research Papers, 50(2): 269-280. https://doi.org/10.1016/S0967-0637(02)00161-9
      郭志馗, 陈超, 陶春辉, 等, 2021. 海底热液循环中矿物沉淀过程数值模拟. 地球科学, 46(2): 729-742. doi: 10.3799/dqkx.2019.959
      罗洪明, 韩喜球, 王叶剑, 等, 2021. 全球现代海底块状硫化物战略性金属富集机理及资源前景初探. 地球科学, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (217) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return