• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934. doi: 10.3799/dqkx.2022.164
    Citation: Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934. doi: 10.3799/dqkx.2022.164

    Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet

    doi: 10.3799/dqkx.2022.164
    • Received Date: 2022-04-05
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • The quantitative evaluation of calcite scaling in high temperature geothermal production wells involves complex physical and chemical processes, in which the two-phase flow in the wellbore is the basis for the evaluation. Based on mass, energy and momentum conservations, this paper firstly constructs a model for governing the two-phase steady flow with phase transition in the presence of CO2 in the wellbore. A robust calculation method is presented and the calculation is validated. Then the temperature and pressure measurements in a typical geothermal well were carried out during discharge tests including static and dynamic test in the Yangbajing geothermal field, Tibet. Combined with the discharge test, the model is successfully used to evaluate the two-phase flow process in a high temperature production well. The results show that the velocity difference between the gas and liquid phase has a decisive impact on the profiles of temperature and pressure in the wellbore. If the velocity difference is not considered in the model, the calculations will deviate far from the measurements. At the production rate of 19.10 kg/s, the calculated wellhead temperature and pressure are about 128 ℃ and 2.6 bar, respectively. The wellhead gas mass fraction is between 6% and 7%, and the corresponding gas phase saturation is about 0.84. The CO2 mass fractions in both gas and liquid phases change sharply about 20-30 m up from the flash point, indicating that serious calcite scaling will occur in this well section.

       

    • loading
    • Barelli, A., Corsi, R., Del Pizzo, G., et al., 1982. A Two-Phase Flow Model for Geothermal Wells in the Presence of Non-Condensable Gas. Geothermics, 11(3): 175-191. https://doi.org/10.1016/0375-6505(82)90026-8
      Battistelli, A., Calore, C., Pruess, K., 1997. The Simulator TOUGH2/EWASG for Modelling Geothermal Reservoirs with Brines and Non-Condensible Gas. Geothermics, 26(4): 437-464. https://doi.org/10.1016/S0375-6505(97)00007-2
      Bertani, R., 2012. Geothermal Power Generation in the World 2005-2010 Update Report. Geothermics, 41: 1-29. https://doi.org/10.1016/j.geothermics.2011.10.001
      Bu, X. B., Guo, Z. P., Wang, L. B., 2021. Process Simulation of Geothermal Fluid Flow in Wellbore and Calcium Carbonate Scaling. Advances in New and Renewable Enengy, 9(5): 434-442 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-560X.2021.05.010
      China Geological Survey of Natural Resources Ministry, Department of New and Renewable Energy of National Energy Administration, Chinese Academy of Science and Technolgy for Development, et al., 2018. China Geothermal Energy Development Report (2018). China Petrochemical Press, Beijing (in Chinese).
      Duo, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field: A Typical High Temperature Geothermal System. Engineering Science, 5(1): 42-47 (in Chinese with English abstract).
      Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop. Auckland.
      Guo, Q. H., Wang, Y. X., 2009. Trace Element Hydrochemistry Indicating Water Contamination in and around the Yangbajing Geothermal Field, Tibet, China. Bulletin of Environmental Contamination and Toxicology, 83(4): 608-613. https://doi.org/10.1007/s00128-009-9812-7
      He, Y. J., Liu, X., Xing, L. X., et al., 2021. Scaling Process Simulation and Anti-Scaling Measures of Karst Geothermal Field in Baoding of Hebei. Earth Science Frontiers, 29(4): 430-437 (in Chinese with English abstract).
      Khasani, Deendarlianto, Itoi, R., 2021. Numerical Study of the Effects of CO2 Gas in Geothermal Water on the Fluid-Flow Characteristics in Production Wells. Engineering Applications of Computational Fluid Mechanics, 15(1): 111-129. https://doi.org/10.1080/19942060.2020.1862709
      Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945 (in Chinese with English abstract).
      Lei, H. W., Cai, Y. N., Lu, M., et al., 2020. A Study on the Thermal-Hydrodynamical-Coupled CO2 Flow Process in the Ordos CCS-Geological-Formation. International Journal of Greenhouse Gas Control, 95: 102999. https://doi.org/10.1016/j.ijggc.2020.102999
      Lu, M., Connell, L. D., 2014a. The Transient Behaviour of CO2 Flow with Phase Transition in Injection Wells during Geological Storage-Application to a Case Study. Journal of Petroleum Science and Engineering, 124: 7-18. https://doi.org/10.1016/j.petrol.2014.09.024
      Lu, M., Connell, L. D., 2014b. Transient, Thermal Wellbore Flow of Multispecies Carbon Dioxide Mixtures with Phase Transition during Geological Storage. International Journal of Multiphase Flow, 63: 82-92. https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.002
      Lund, J. W., 2008. Development and Utilization of Geothermal Resources. In: Goswami, D. Y., Zhao, Y., eds., Proceedings of ISES World Congress 2007 (Vol. I-Vol. V). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75997-3_13
      Lund, J. W., Freeston, D. H., Boyd, T. L., 2011. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics, 40(3): 159-180. https://doi.org/10.1016/j.geothermics.2011.07.004
      Pan, L. H., Oldenburg, C. M., 2014. T2Well—An Integrated Wellbore-Reservoir Simulator. Computers & Geosciences, 65: 46-55. https://doi.org/10.1016/j.cageo.2013.06.005
      Shi, H., Holmes, J. A., Durlofsky, L. J., et al., 2005. Drift-Flux Modeling of Two-Phase Flow in Wellbores. SPE Journal, 10(1): 24-33. https://doi.org/10.2118/84228-pa
      Vasini, E. M., Battistelli, A., Berry, P., et al., 2018. Interpretation of Production Tests in Geothermal Wells with T2Well-EWASG. Geothermics, 73: 158-167. https://doi.org/10.1016/j.geothermics.2017.06.005
      Wang, G. L., Zhang, W., Liang, J. Y., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Xu, D. L., Jing, T. Y., Tan, J. Q., 2018. Analysis of Production Wells Monitoring and Its Impacts in Yangbajing Geothermal Field. Sino-Global Energy, 23(12): 22-28 (In Chinese with English abstract).
      Zhang, L., Chen, S., Zhang, C., 2019. Geothermal Power Generation in China: Status and Prospects. Energy Science & Engineering, 7(5): 1428-1450. https://doi.org/10.1002/ese3.365
      Zhao, P., Duo, J., Liang, T. L., et al., 1998. Characteristics of Gas Geochemistry in Yangbajing Geothermal Field, Tibet. Chinese Science Bulletin, 43(21): 1770-1777. https://doi.org/10.1007/BF02883369
      Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (In Chinese with English abstract).
      Zuber, N., Findlay, J. A., 1965. Average Volumetric Concentration in Two-Phase Flow Systems. Journal of Heat Transfer, 87(4): 453-468. https://doi.org/10.1115/1.3689137
      卜宪标, 郭志鹏, 王令宝, 2021. 地热流体在井筒中的流动及碳酸钙结垢过程模拟. 新能源进展, 9(5): 434-442. doi: 10.3969/j.issn.2095-560X.2021.05.010
      自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等, 2018. 中国地热能发展报告(2018). 北京: 中国石化出版社.
      多吉, 2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学, 5(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200301007.htm
      何雨江, 刘肖, 邢林啸, 等, 2021. 河北保定岩溶地热结垢过程模拟及防垢对策. 地学前缘, 29(4): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204035.htm
      雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 水文地球化学——以西藏羊八井为例. 地球科学, 48(3): 935-945.
      王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      许多龙, 荆铁亚, 谭金群, 2018. 羊八井热田生产井监测及变化影响分析. 中外能源, 23(12): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201812004.htm
      周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS200310001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1093) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return