• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Yin Senlin, Zhang Tong, Tang Wenjun, Xia Ping, Yue Dali, Yu Fenglin, Huang Fan, Chen Xu, 2022. Reservoir Superposed Pattern Characterization of Well-Logging and Seismic Data Calibration with Meandering Channels: A Case Study of Jurassic Toutunhe Formation in Fudong No.5 Well Area, Eastern Junggar Basin. Earth Science, 47(11): 4060-4074. doi: 10.3799/dqkx.2022.168
    Citation: Yin Senlin, Zhang Tong, Tang Wenjun, Xia Ping, Yue Dali, Yu Fenglin, Huang Fan, Chen Xu, 2022. Reservoir Superposed Pattern Characterization of Well-Logging and Seismic Data Calibration with Meandering Channels: A Case Study of Jurassic Toutunhe Formation in Fudong No.5 Well Area, Eastern Junggar Basin. Earth Science, 47(11): 4060-4074. doi: 10.3799/dqkx.2022.168

    Reservoir Superposed Pattern Characterization of Well-Logging and Seismic Data Calibration with Meandering Channels: A Case Study of Jurassic Toutunhe Formation in Fudong No.5 Well Area, Eastern Junggar Basin

    doi: 10.3799/dqkx.2022.168
    • Received Date: 2022-03-07
    • Publish Date: 2022-11-25
    • Characterization of meandering channel reservoir superposed pattern is difficult to Fudong No.5 well area with large well spacing. Using the data of core, seismic, logging, and production test, and the methods of well-logging seismic data calibration, hierarchical architecture, and seismic forward modeling, in this study it established the microfacies, hierarchical meandering channel sand bodies, and the response characteristics of the waveform in the seismic forward modeling of superimposed channel sand body. The results show follows: (1) It is a complete cycle from bottom to top, with meandering river delta, distributary channel system to meandering river. At the first member, it is the development of meandering river delta depositional system, superposition of multiple lobes sand body. At the second member, it has evolved into meandering distribution channel system, and the sand body is stacked with banded shape. At the third member, it is the meandering river depositional system, and the sand body is wide banded shape overlapped. (2) There are four classes of the meandering channel to be launched in seismic forward modeling, after setting up the reasonable parameters of the work area. The relationship between developmental stages of single channel can be comprehensively determined by the well-logging calibration and the monoclinal, stepped, concave characteristics that overlapping of single channels at different periods shows in the seismic reflection, along with the transverse strength change of the amplitude. (3) The meandering channel sand bodies in the study area can be divided into three types: single channel, multi-channel superposition and stable migration channels. The single channel type seismic reflection amplitude is strong in the middle and weak on both sides, presenting a continuous banded distribution, with a width about 250 m, while the multi-channel superimposed type seismic reflection amplitude is greatly varied in strength and the distribution of superimposed banded poorly continued, with a width about 500 m. The stable migration channel type seismic response waveform changes weakly and continuously, presenting a large range of continuous distribution, and a width about 1 500 m. The research is not only of great practical significance for improving oil recovery of meandering channel reservoirs by using horizontal wells, but also of great significance for enriching characterization method of large well spacing meandering channel architecture combined with well-logging and seismic.

       

    • loading
    • Bridge, J. S., 2003. Rivers and Floodplains: Forms, Processes and Sedimentary Record. Blackwell Publishing, Oxford, 491.
      Bridge, J. S., Tye, R. S., 2000. Interpreting the Dimensions of Ancient Fluvial Channel Bars, Channels and Channel Belts from Wire-Line Logs and Cores. AAPG Bull., 84: 1205-1228.
      He, W. A., Barzgar, E., Feng, W. P., et al., 2021. Reservoirs Patterns and Key Controlling Factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. Journal of Earth Science, 32(4): 1011-1021. doi: 10.1007/s12583-020-1061-z
      He, W. X., Wu, S. H., Tang, Y. J., et al., 2005. The Architecture Analysis of the Underground Point Bar-Taking Gudao Oilfield as an Example. Journal of Mineralogy and Petrology, 25(2): 81-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2005.02.014
      Hu, G. Y., Chen, F., Fan, T. E., et al., 2014. Analysis of Fluvial Facies Compound Sandbody Architecture of the Neogene Minghuazhen Formation of S Oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592 (in Chinese with English abstract).
      Ji, Y. L., Zhou, Y., Wu, S. H., et al., 2012. Formation Mechanism and Recognizing Method of High Resolution Strata Architecture Boundary in Fluvial Strata. Journal of China University of Petroleum (Edition of Natural Science), 36(2): 8-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.02.002
      Jin, J., Ye, Y., Wen, H. G., et al., 2016. Reservoir Forming Conditions and Controlling Factors Analysis in the Second Member of Toutunhe Formation in Fudong Slope. Xinjiang Geology, 34(2): 257-262 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2016.02.018
      Li, B. E., Yin, T. J., Wang, Y. J., et al., 2022. Characteristics of the Reservoir Architecture of the Meandering River under the Conditions of the Thin Well Network in the Bohai Sea. Petroleum Geology & Oilfield Development in Daqing, 41(2): 1-10 (in Chinese with English abstract).
      Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.013
      Li, W., Yue, D. L., Hu, G. Y., et al., 2017. Frequency-Segmented Seismic Attribute Optimization and Sandbody Distribution Prediction: An Example in North Block, Qinhuangdao 32-6 Oilfield. Oil Geophysical Prospecting, 52(1): 121-130, 17 (in Chinese with English abstract).
      Liang, H. W., Wu, S. H., Mu, L. X., et al., 2013. Fluvial Reservoir Characterization with Phase-Controlled Forward Modeling in the North Block of the Qinhuangdao 32-6 Oilfield, a Case Study. Oil Geophysical Prospecting, 48(6): 978-984 (in Chinese with English abstract).
      Lin, C. Y., Zhang, X. G., Wang, Y. J., et al., 2008. Seismic Reservoir Geology Research and Its Application in Dagang Offshore Area. Earth Science Frontiers, 15(1): 140-145 (in Chinese with English abstract).
      Liu, X. P., Lu, S. F., Tang, M. M., et al., 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957 (in Chinese with English abstract).
      Ma, S. Z., Yang, Q. Y., 2000. Sedimentary Model, Three-Dimensional Configuration and Heterogeneity Model of Meandering Point DAMS. Acta Sedimentologica Sinica, 18(2): 241-247 (in Chinese with English abstract).
      Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493 (in Chinese with English abstract).
      Miall, A D., 1985. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth Science Reviews, 22(4): 261-308. doi: 10.1016/0012-8252(85)90001-7
      Miall, A. D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag Inc., Heidelberg, 582.
      Miall, A. D., 2013. Fluvial Depositional Systems. Springer-Verlag Inc., Heidelberg, 316.
      Patricia, C., David, D., María, H. M., et al., 2018. From Conventional Outcrop Datasets and Digital Outcrop Models to Flow Simulation in the Pont de Montanyana Point-Bar Deposits (Ypresian, Southern Pyrenees). Marine and Petroleum Geology, 94: 19-42. https://doi.org/10.1016/j.marpetgeo.2018.03.040
      Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73: 367-388. doi: 10.1306/111302730367
      Wang, W. F., Yue, D. L., Zhao, J. Y., et al., 2020. Research on Stratigraphic Structure Based on Seismic Forward Modeling: A Case Study of the Third Member of the Yanchang Formation in Heshui Area, Ordos Basin. Oil Geophysical Prospecting, 55(2): 411-418, 232 (in Chinese with English abstract).
      Wu, S. H., Yue, D. L., Feng, W. J., et al., 2021. Research Progress of Depositional Architecture of Clastic Systems. Journal of Palaeogeography, 23(2): 245-262 (in Chinese with English abstract).
      Yin, S. L., Chen, G. Y., Dai, C. M., et al., 2015. Reservoir Architecture and Remaining Oil Distribution in Mouth Bar-A Case Study on the Braided Delta of Long-Axis Gentle Slope in Zaonan Fault Block of Dagang Oilfield. Oil & Gas Geology, 36(4): 630-639 (in Chinese with English abstract).
      Yu, J. W., Zheng, R. C., Liu, N., et al., 2015. Characterization of Clay Minerals in Toutunhe Formation of Fudong Slope Area in Eastern Junggar Basin. Oil & Gas Geology, 36(6): 945-954 (in Chinese with English abstract).
      Yu, X. H., 2012. Existing Problems and Sedimentogenesis-Based Methods of Reservoir Characterization during the Middle and Later Periods of Oilfield Development. Earth Science Frontiers, 19(2): 1-14 (in Chinese with English abstract).
      Yue, D. L., Hu, G. Y., Li, W., et al., 2018. Meandering Fluvial Reservoir Architecture Characterization Method and Application by Combining Well Logging and Seismic Data: A Case Study of QHD32-6 Oilfield. China Offshore Oil and Gas, 30(1): 99-109 (in Chinese with English abstract).
      Yue, D. L., Wu, S. H., Tan, H. Q., et al., 2008. An Anatomy of Paleochannel Reservoir Architecture of Meandering River Reservoir—A Case Study of Guantao Formation, the West 7th Block of Gudong Oilfield. Earth Science Frontiers, 15(1): 101-109 (in Chinese with English abstract).
      Zhang, C. M., Zhu, R., Zhao, K., et al., 2017. From End Member to Continuum: Review of Fluvial Facies Model Research. Acta Sedimentologica Sinica, 35(5): 926-944 (in Chinese with English abstract).
      Zheng, R. C., Fu, Z. G., Zhang, Y. Q., et al., 2008. Distribution Character of the Interior Interlayer in Meander Channel Sandbodies of PU I -2 Oil-Bed in Sabei of Daqing Oil Field, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(5): 489-495 (in Chinese with English abstract).
      Zhu, X. M., Ge, J. W., Zhao, H. C., et al., 2017. Development of Shelf-Edge Delta Researches and Typical Case Analyses. Acta Sedimentologica Sinica, 35(5): 945-957 (in Chinese with English abstract).
      Zeng, H. L., Wang, W., Liang, Q. S., et al., 2017. Seismic Expression of Delta to Deep-Lake Transition and Its Control on Lithology, Total Organic Content, Brittleness, and Shale-Gas Sweet Spots in Triassic Yanchang Formation, Southern Ordos Basin, China. Interpretation-A Journal of Subsurface Characterization, 5(2): 1-14. https://doi.org/10.1190/INT-2016-0095.1
      Zeng, H. L., Zhu, X. M., Zhu, R. K., et al., 2012. Guidelines for Seismic Sedimentologic Study in Non-Marine Postrift Basins. Petroleum Exploration and Development, 39(3): 295-304. https://doi.org/10.1016/S1876-3804(12)60045-7
      Zeng, Z. W., Zhu, H. T., Zeng, H. L., et al., 2021. Seismic Sedimentology Analysis of Fluvial-Deltaic Systems in a Complex Strike-Slip Fault Zone, Bohai Bay Basin, China: Implications for Reservoir Prediction. Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2021.109290
      Zhang, T., Zhang, X. G., Lin, C. Y., et al., 2015. Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir: From Model to Real Data. Journal of Earth Science, 26(4): 598-606.
      何文祥, 吴胜和, 唐义疆, 等, 2005. 地下点坝砂体内部构型分析: 以孤岛油田为例. 矿物岩石, 25(2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200502014.htm
      胡光义, 陈飞, 范廷恩, 等, 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201403021.htm
      纪友亮, 周勇, 吴胜和, 等, 2012. 河流相地层高精度地层构型界面形成机制及识别方法. 中国石油大学学报(自然科学版), 36(2): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201202001.htm
      靳军, 叶勇, 文华国, 等, 2016. 阜东斜坡带头屯河组二段成藏条件及控制因素研究. 新疆地质, 34(2): 257-262. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201602019.htm
      李冰娥, 尹太举, 王杨君, 2022. 渤海海域稀井网条件下曲流河储层构型表征. 大庆石油地质与开发, 41(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202202001.htm
      李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211003.htm
      李伟, 岳大力, 胡光义, 等, 2017. 分频段地震属性优选及砂体预测方法: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 52(1): 121-130, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201701017.htm
      梁宏伟, 吴胜和, 穆龙新, 等, 2013. 应用相控正演模拟方法精细描述河流相储层: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 48(6): 978-984, 1015. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201306019.htm
      林承焰, 张宪国, 王友净, 等, 2008. 地震油藏地质研究及其在大港滩海地区的应用. 地学前缘, 15(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801018.htm
      刘雪萍, 卢双舫, 唐明明, 等, 2021. 河流‒潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
      马世忠, 杨清彦, 2000. 曲流点坝沉积模式、三维构形及其非均质模型. 沉积学报, 18(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200002011.htm
      孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
      王文枫, 岳大力, 赵继勇, 等, 2020. 利用地震正演模拟方法研究地层结构: 以鄂尔多斯盆地合水地区延长组三段为例. 石油地球物理勘探, 55(2): 411-418, 232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202002020.htm
      吴胜和, 岳大力, 冯文杰, 等, 2021. 碎屑岩沉积构型研究若干进展. 古地理学报, 23(2): 245-262. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202102002.htm
      印森林, 陈恭洋, 戴春明, 等, 2015. 河口坝内部储层构型及剩余油分布特征: 以大港油田枣南断块长轴缓坡辫状河三角洲为例. 石油与天然气地质, 36(4): 630-639. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504014.htm
      于景维, 郑荣才, 柳妮, 等, 2015. 准噶尔盆地东部阜东斜坡带头屯河组粘土矿物特征. 石油与天然气地质, 36(6): 945-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506011.htm
      于兴河, 2012. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法. 地学前缘, 19(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202003.htm
      岳大力, 胡光义, 李伟, 等, 2018. 井震结合的曲流河储层构型表征方法及其应用——以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801012.htm
      岳大力, 吴胜和, 谭河清, 等, 2008. 曲流河古河道储层构型精细解剖: 以孤东油田七区西馆陶组为例. 地学前缘, 15(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801013.htm
      张昌民, 朱锐, 赵康, 等, 2017. 从端点走向连续: 河流沉积模式研究进展述评. 沉积学报, 35(5): 926-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705006.htm
      郑荣才, 付志国, 张永庆, 等, 2008. 大庆萨北开发区下白垩统青山口组葡Ⅰ-2油层曲流河边滩砂体内部建筑结构. 成都理工大学学报(自然科学版), 35(5): 489-495. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200805000.htm
      朱筱敏, 葛家旺, 赵宏超, 等, 2017. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 35(5): 945-957. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (944) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return