Citation: | Shi Zide, Mao Xumei, Ye Jianqiao, Dong Yaqun, 2024. Source Analysis of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287. doi: 10.3799/dqkx.2022.170 |
Aydin, H., Karakuş, H., Mutlu, H., 2020. Hydrogeochemistry of Geothermal Waters in Eastern Turkey: Geochemical and Isotopic Constraints on Water-Rock Interaction. Journal of Volcanology and Geothermal Research, 390: 106708. https://doi.org/10.1016/j.jvolgeores.2019.106708
|
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
|
Benmarce, K., Hadji, R., Zahri, F., et al., 2021. Hydrochemical and Geothermometry Characterization for a Geothermal System in Semiarid Dry Climate: The Case Study of Hamma Spring (Northeast Algeria). Journal of African Earth Sciences, 182: 104285. https://doi.org/10.1016/j.jafrearsci.2021.104285
|
Craig, H., 1953. The Geochemistry of the Stable Carbon Isotopes. Geochimica et Cosmochimica Acta, 3(2-3): 53-92. https://doi.org/10.1016/0016-7037(53)90001-5
|
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
|
Das, P., Maya, K., Padmalal, D., 2021. Hydrochemistry, Geothermometry and Origin of the Low Temperature Thermal Springs of South Konkan Region, India. Geothermics, 90: 101997. https://doi.org/10.1016/j.geothermics.2020.101997
|
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
|
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
|
Guo, W., Lin, X., Hu, S. H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374 (in Chinese with English abstract).
|
Guo, Y. Y., Lü, Z. C., Wang, G. C., et al., 2016. Hydrogeochemical Simulation of Groundwater in Eastern Fengfeng Mining Area. Coal Geology & Exploration, 44(6): 101-105 (in Chinese with English abstract).
|
Han, D. M., Liang, X., Jin, M. G., et al., 2010. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1-2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011
|
Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. https://doi.org/10.1016/S0012-821X(00)00126-6
|
Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract).
|
Li, J., Liang, X., Chen, N. J., et al., 2017. Determination of Chemical Compositions of Pore Water in Clay-Rich Formations Using Geochemical Modeling. Hydrogeology & Engineering Geology, 44(1): 1-8 (in Chinese with English abstract).
|
Li, N., 2020. Genetic Model of Karst Hot Water in Xiangxi River Basin and Inversion of Hydrogeological Parameters: A Case Study of Nanyang Hot Spring in Xingshan County, Hubei Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Li, Y. G., Lin, W. J., Xing, L. X., et al., 2021. Estimation of Deep Geothermal Reservoir Temperature in Qabqa Area, Qinghai Province. Geology and Resources, 30(4): 479-484, 511 (in Chinese with English abstract).
|
Liao, X., Jiang, H., Xu, Z. X., et al., 2020. Hydrogeochemical Characteristics and Genesis Mechanism of Geothermal Water in Awang, Eastern Tibet. Journal of Engineering Geology, 28(4): 916-924 (in Chinese with English abstract).
|
Lin, W. R., Suzuki. S., Takahashi, X., et al., 2003. Fluid Inclusions and Thermal Microcracking in Inada Granite. Chinese Journal of Rock Mechanics and Engineering, 22(6): 899-904 (in Chinese with English abstract).
|
Lu, H. Z., 1996. Magmatic, Fluid-Magmatic and Fluid Inclusions Studies on Granites, South China. Journal of Guilin Institute of Technology, 16(1): 1-13 (in Chinese with English abstract).
|
Luo, L., Zhu, X., He, C. Y., et al., 2019. Study on the Genesis of Geothermal Fluid in Xianyang Geothermal Field. Geological Review, 65(6): 1422-1430 (in Chinese with English abstract).
|
Mao, X. M., Wang, Y. X., Zhan, H. B., et al., 2015. Geochemical and Isotopic Characteristics of Geothermal Springs Hosted by Deep-Seated Faults in Dongguan Basin, Southern China. Journal of Geochemical Exploration, 158: 112-121. https://doi.org/10.1016/j.gexplo.2015.07.008
|
Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889
|
Marques, J. M., Matias, M. J., Basto, M. J., et al., 2010. Hydrothermal Alteration of Hercynian Granites, Its Significance to the Evolution of Geothermal Systems in Granitic Rocks. Geothermics, 39(2): 152-160. https://doi.org/10.1016/j.geothermics.2010.03.002
|
Ni, P., Fan, H. R., Pan, J. Y., et al., 2021. Progress and Prospect of Fluid Inclusion Research in the Past Decade in China (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 802-818, 1001 (in Chinese with English abstract).
|
Nordstrom, D. K., Lindblom, S., Donahoe, R. J., et al., 1989. Fluid Inclusions in the Stripa Granite and Their Possible Influence on the Groundwater Chemistry. Geochimica et Cosmochimica Acta, 53(8): 1741-1755. https://doi.org/10.1016/0016-7037(89)90295-0
|
Pang, Z. H., Reed, M., 1998. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. https://doi.org/10.1016/S0016-7037(98)00037-4
|
Qiu, X. L., Wang, Y., Wang, Z. Z., et al., 2018. Determining the Origin, Circulation Path and Residence Time of Geothermal Groundwater Using Multiple Isotopic Techniques in the Heyuan Fault Zone of Southern China. Journal of Hydrology, 567: 339-350. https://doi.org/10.1016/j.jhydrol.2018.10.010
|
Rowe, G. L., Brantley, S. L., 1993. Estimation of the Dissolution Rates of Andesitic Glass, Plagioclase and Pyroxene in a Flank Aquifer of Poás Volcano, Costa Rica. Chemical Geology, 105(1-3): 71-87. https://doi.org/10.1016/0009-2541(93)90119-4
|
Shen, Z. L., Wang, Y. X., 2002. Review and Outlook of Water-Rock Interaction Studies. Earth Science, 27(2): 127-133 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.02.001
|
Su, Y., Ma, Z. Y., Liu, F., et al., 2007. Deuterium Excess Parameter Features Study on Thermal Groundwater of Xi'an and Xianyang. Coal Geology & Exploration, 35(3): 39-41 (in Chinese with English abstract).
|
Sun, Z. X., Gao, B., Shvartsev, S., et al., 2017. The Thermal Water Geochemistry in Jiangxi Province (SE-China). Procedia Earth and Planetary Science, 17: 940-943. https://doi.org/10.1016/j.proeps.2017.01.031
|
Sun, Z. X., Zhu, Y. G., Zhang, W., 2004. Brief Review on Advancement of Geochemical Kinetical Studies of Mineral-Water Interactions. Journal of East China University of Technology (Natural Science), 27(1): 14-18 (in Chinese with English abstract).
|
Wang, X. D., Liu, J. Q., Wang, X. W., 2008. Preliminary Study on Composition of Individual Fluid Inclusion in Minerals from Certain of W-Sn-Be Deposits, Nanling. Geology and Mineral Resources of South China, 24(3): 40-45 (in Chinese with English abstract).
|
Wang, Z. F., Hao, R. J., Yang, H. B., et al., 2015. Research Progress on Water-Rock Interaction. Journal of Water Resources and Water Engineering, 26(3): 210-216 (in Chinese with English abstract).
|
Wu, K. J., Ma, C. M., 2010. Geochemical Characteristics of Geothermal Water in Zhengzhou City. Geotechnical Investigation & Surveying, 38(5): 45-49 (in Chinese with English abstract).
|
Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China: Evidence from Gravity Analyses. Geothermics, 72: 225-231. https://doi.org/10.1016/j.geothermics.2017.11.009
|
Xun, Z., 2021. Evolution Characteristics of Zijin-Boluo Fault in Shiba-Huangshadong Area of Huizhou City and Its Relationship with Deep Geothermal Energy. Western Resources, (4): 106-108 (in Chinese with English abstract).
|
Yan, X. X., Gan, H. N., Yue, G. F., 2019. Hydrogeochemical Characteristics and Genesis of Typical Geothermal Fileds from Huangshadong to Conghua in Guangdong. Geological Review, 65(3): 743-754 (in Chinese with English abstract).
|
Yang, J. H., Kang, L. F., Liu, L., et al., 2019. Tracing the Origin of Ore-Forming Fluids in the Piaotang Tungsten Deposit, South China: Constraints from In-Situ Analyses of Wolframite and Individual Fluid Inclusion. Ore Geology Reviews, 111: 102939. https://doi.org/10.1016/j.oregeorev.2019.102939
|
Yu, B. C., 2011. Analysis of Active Tectonics and the Evaluation of Regional Crustal Stability Based on GIS in Pearl River Delta (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Zhang, M., Kuang, J., Xiao, Z. C., et al., 2021. Geological Evolution since the Yanshanian in Huizhou, Guangdong Province: New Implications for the Tectonics of South China. Earth Science, 46(1): 242-258 (in Chinese with English abstract).
|
Zhang, M. Z., Guo, Q. H., Liu, M. L., et al., 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987 (in Chinese with English abstract).
|
郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374 doi: 10.3799/dqkx.2019.199
|
郭钰颖, 吕智超, 王广才, 等, 2016. 峰峰矿区东部地下水水文地球化学模拟. 煤田地质与勘探, 44(6): 101-105.
|
旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
|
李静, 梁杏, 陈乃嘉, 等, 2017. 地球化学模拟方法确定黏性土孔隙水化学组分. 水文地质工程地质, 44(1): 1-8.
|
李娜, 2020. 香溪河流域岩溶热水成因模式及水文地质参数反演研究: 以湖北省兴山县南阳温泉为例(博士学位论文). 武汉: 中国地质大学.
|
李永革, 蔺文静, 邢林啸, 等, 2021. 青海省恰卜恰地区深部热储温度估算. 地质与资源, 30(4): 479-484, 511.
|
廖昕, 蒋翰, 徐正宣, 等, 2020. 西藏东部阿旺地下热水化学特征及其成因初探. 工程地质学报, 28(4): 916-924.
|
林为人, 铃木舜一, 高桥学, 等, 2003. 稻田花岗岩中的流体包裹体及由其导致高温条件下微小裂纹的形成. 岩石力学与工程学报, 22(6): 899-904.
|
卢焕章, 1996. 华南花岗岩的岩浆与岩浆-流体包裹体及其意义. 桂林工学院学报, 16(1)1-13
|
罗璐, 朱霞, 何春艳, 等, 2019. 陕西咸阳地热田地热流体成因研究. 地质论评, 65(6): 1422-1430.
|
倪培, 范宏瑞, 潘君屹, 等, 2021. 流体包裹体研究进展与展望(2011-2020). 矿物岩石地球化学通报, 40(4): 802-818, 1001.
|
沈照理, 王焰新, 2002. 水-岩相互作用研究的回顾与展望. 地球科学, 27(2): 127-133. http://www.earth-science.net/article/id/1078
|
苏艳, 马致远, 刘方, 等, 2007. 西安、咸阳地下热水氘过量参数研究. 煤田地质与勘探, 35(3): 39-41.
|
孙占学, 朱永刚, 张文, 2004. 矿物-水反应的地球化学动力学研究进展. 东华理工学院学报, 27(1): 14-18.
|
王晓地, 刘家齐, 汪雄武, 2008. 南岭某些钨锡铍矿床中单个流体包裹体成分初步研究. 华南地质与矿产, 24(3): 40-45.
|
王周锋, 郝瑞娟, 杨红斌, 等, 2015. 水岩相互作用的研究进展. 水资源与水工程学报, 26(3): 210-216.
|
吴孔军, 马传明, 2010. 郑州市地下热水地球化学特征. 工程勘察, 38(5): 45-49.
|
荀忠, 2021. 惠州市石坝-黄沙洞地区紫金-博罗断裂演化特征及其与深层地热的关系. 西部资源, (4): 106-108.
|
闫晓雪, 甘浩男, 岳高凡, 2019. 广东惠州-从化典型地热田水文地球化学特征及成因分析. 地质论评, 65(3): 743-754.
|
于彬春, 2011. 基于GIS的珠江三角洲地区活动构造分析及区域地壳稳定性评价(硕士学位论文). 武汉: 中国地质大学.
|
张敏, 旷健, 肖志才, 等, 2021. 广东惠州燕山期以来地质构造演化: 对华南构造的新启示. 地球科学, 46(1): 242-258. doi: 10.3799/dqkx.2020.016
|
张梦昭, 郭清海, 刘明亮, 等, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
|