Citation: | Zhang Han, Gui Lei, Wang Tengfei, Yang Sai, 2024. Prediction of Quaternary Cover Thickness and 3D Geological Modeling Based on BP Neural Network. Earth Science, 49(2): 550-559. doi: 10.3799/dqkx.2022.173 |
Cascini, L., Ciurleo, M., Di Nocera, S., 2016. Soil Depth Reconstruction for the Assessment of the Susceptibility to Shallow Landslides in Fine-Grained Slopes. Landslides, 14(2): 459-471. https://doi.org/10.1007/s10346-016-0720-8
|
Chai, Q., 2015. The Analysis about Soil Main Properties and Its Influence Factors of Grassland in Xinjiang(Dissertation). Xinjiang Agricultural University, Xinjian(in Chinese with English abstract).
|
Che, D. F., Jia, Q. R., 2019. Three-Dimensional Geological Modeling of Coal Seams Using Weighted Kriging Method and Multi-Source Data. IEEE Access, 7: 118037-118045. https://doi.org/10.1109/access.2019.2936811
|
Chen, S., Chen, G. J., Xu, G. L., 2008. Mechanism of Geological Processes of Formation and Deformation of the Huangtupo Landslide. Earth Science, 33(3): 411-415(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2008.03.017
|
Chen, Y. Y., Li, Y. Q., Wei, D. T., et al., 2021. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436(in Chinese with English abstract).
|
Clyde, W. C., Fisher, D. C., 1997. Comparing the Fit of Stratigraphic and Morphologic Data in Phylogenetic Analysis. Paleobiology, 23(1): 1-19. https://doi.org/10.1017/s0094837300016614
|
Houlding, S. W., 1992. Subsurface Contaminant Assessment by 3D Geoscience Modeling. In: Singhal, R. K., Mehrotra, A. K., Fytas, K., eds., Environmental Issues and Management of Waste in Energy and Mineral, AA Balkema, Calgary, Canada, 1355-1362.
|
Jiang, T. Y., Cui, L. L., Li, J. H., 2012. An Implementation of 3D Landslide Geological Modeling and Visualization. Advanced Materials Research, 594-597: 2338-2343. https://doi.org/10.4028/www.scientific.net/amr.594-597.2338
|
Kuriakose, S. L., Devkota, S., Rossiter, D. G., et al., 2009. Prediction of Soil Depth Using Environmental Variables in an Anthropogenic Landscape, a Case Study in the Western Ghats of Kerala, India. CATENA, 79(1): 27-38. https://doi.org/10.1016/j.catena.2009.05.005
|
Li, M. C., Bai, S., Kong, R., et al., 2020. 3D Parametric Modeling Method of Engineering-Scale Geological Structures. Chinese Journal of Rock Mechanics and Engineering, 39(Supp. 1): 2848-2858(in Chinese with English abstract).
|
Liu, L., Yin, K. L., Zhang, J., 2016. Estimation Method of the Quaternary Deposits Thickness and Its Application in Wanzhou Central District, Three Gorges Reservoir Region. Bulletin of Geological Science and Technology, 35(1): 177-183(in Chinese with English abstract).
|
Mehnatkesh, A., Ayoubi, S., Jalalian, A., et al., 2013. Relationships between Soil Depth and Terrain Attributes in a Semi Arid Hilly Region in Western Iran. JournalofMountainScience, 10(1): 163-172. https://doi.org/10.1007/s11629-013-2427-9
|
Miu, X., 2016, Research on Landslide Risk Assessment Considering the States of Slope Activity: A Case of Fengjie New County(Dissertation), Chengdu University of Technology, Chengdu(in Chinese with English abstract).
|
Muzik, J., Vondráčková, T., Sitányiová, D., et al., 2015. Creation of 3D Geological Models Using Interpolation Methods for Numerical Modelling. Procedia Earth and Planetary Science, 15: 25-30. https://doi.org/10.1016/j.proeps.2015.08.007
|
Na, W. B., Su, Z. W., Zhang, P., 2013. Research of Oilfield Production Forecast Based on Least Squares Fitting and Improved BP Neural Network. Applied Mechanics and Materials, 333-335: 1456-1460. https://doi.org/10.4028/www.scientific.net/amm.333-335.1456
|
Patton, N. R., Lohse, K. A., Godsey, S. E., et al., 2018. Predicting Soil Thickness on Soil Mantled Hillslopes. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05743-y
|
Penížek, V., Borůvka, L., 2006. Soil Depth Prediction Supported by Primary Terrain Attributes: A Comparison of Methods. Plant, SoilandEnvironment, 52(9): 424-430. https://doi.org/10.17221/3461-pse
|
Shen, J., Xu, D. W., Cai, J, X., 2008. 3D Geological Modeling of Landslides Based on Borehole Data. Journal of East China University of Technology(Natural Science), 31(2): 127-130(in Chinese with English abstract).
|
Thak, J. H., Ryu, T. G., Sin, J. S., et al., 2021. Digital Terrain Analysis Approach to Improve Soil Depth Prediction with Parent Material Dataset. Eurasian Soil Science, 54(12): 1818-1825. https://doi.org/10.1134/s1064229321120139
|
Wang, J. M., Zhao, H., Bi, L., et al., 2018. Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions. Minerals, 8(10): 443. https://doi.org/10.3390/min8100443
|
Wang, Y., Zhang, X. Y., Chen, W. J., et al., 2017. Application of Virtual Boreholes in 3D Deep Geological Modeling. Urban Geology, 12(2): 118-122(in Chinese with English abstract).
|
Wen, C. M., 2018. 3D Geological Modeling Technology And Tts Application Tn a Mine. In: 3rd International Conference on Smart City and Systems Engineering(ICSCSE), IEEE, China, 809-812.
|
Xiong, Z. Q., 2007. Study on the Technology of 3D Engineering Geological Modeling and Visualization(PhD thesis). The Chinese Academy of Sciences(Institute of Rock & Soil Mechanics), Wuhan(in Chinese with English abstract).
|
Yan, Z., 2015. Research and Application on BP Neural Network Algorithm. In: International Industrial Informatics and Computer Engineering Conference in Peoples R China 2015, Xi'an, 1444-1447.
|
Yang, L., Song, M. L., 2009. Research on BP Neural Network for Nonlinear Economic Modeling and Its Realization Based on Matlab. In: Luo, Q., Song, M., eds., 3rd International Symposium on Intelligent Information Technology Application, IEEE, Nanchang, 505.
|
Yi, X. S., Li, G. S., Yin, Y. Y., et al., 2012. Comparison on Soil Depth Prediction among Different Spatial Interpolation Methods: A Case study in the Three-River Headwaters Region of Qinghai Province. Geographical Research, 31(10): 1793-1805(in Chinese with English abstract).
|
Yip, H. J., Ji, G. R., Liu, J. H., et al., 2016. Optimal Structure and Parameters of BP Neural Network for Curve Fitting Problem. In: Jing, W., Guiran, C., Huiyu, Z., eds., 6th International Conference on Electronic, Mechanical, Information and Management Society (EMIM), Shenyang, 40: 1647-1652.
|
Zhang, L. Q., Zhang, X., Liang, X., et al., 2021. Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin. Earth Science, 46(9): 3245-3257(in Chinese with English abstract).
|
Zhang, M. S., Tang, Y. M., 2008. Risk Investigation Method and Practice of Geohazards. Geological Bulletin of China, 27(8): 1205-1216(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.08.017
|
Zhang, W. T., Hu, G. Q., Sheng, J. D., et al., 2018. Estimating Effective Soil Depth at Regional Scales: Legacy Maps versus Environmental Covariates. Journal of Plant Nutrition and Soil Science, 181(2): 167-176. https://doi.org/10.1002/jpln.201700081
|
Zhu, D. P., Niu, W. J., Yang, Q., et al., 2001. 3 Dimension visualization for Geology-Constructed-Model. Journal of Beijing University of Aeronautics and Astronautics, 27(4): 448-451(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5965.2001.04.018
|
Zhu, L. F., Wang, X. F., Zhang, B., 2014. Modeling and Visualizing Borehole Information on Virtual Globes Using KML. Computers & Geosciences, 62(1): 62-70. https://doi.org/10.1016/j.cageo.2013.09.016
|
Ziadat, F. M., 2010. Prediction of Soil Depth from Digital Terrain Data by Integrating Statistical and Visual Approaches. Pedosphere, 20(3): 361-367. https://doi.org/10.1016/s1002-0160(10)60025-2
|
柴强, 2015. 新疆草地土壤主要性质及影响因素的分析(硕士学位论文). 新疆: 新疆农业大学.
|
陈松, 陈国金, 徐光黎, 2008. 黄土坡滑坡形成与变形的地质过程机制. 地球科学, 33(3): 411-415. doi: 10.3321/j.issn:1000-2383.2008.03.017
|
陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436. doi: 10.3799/dqkx.2021.097
|
杜文凤, 彭苏萍, 2010. 利用地质统计学预测煤层厚度. 岩石力学与工程学报, 29(增1): 2762-2767. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1028.htm
|
李明超, 白硕, 孔锐, 等, 2020. 工程尺度地质结构三维参数化建模方法. 岩石力学与工程学报, 39(增1): 2848-2858. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1026.htm
|
刘磊, 殷坤龙, 张俊, 2016. 三峡库区万州主城区第四系堆积层厚度的估算方法及应用. 地质科技情报, 35(1): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601028.htm
|
缪信, 2016. 考虑斜坡活动性状态的滑坡风险评价技术研究——以奉节新城区为例(硕士学位论文). 成都: 成都理工大学.
|
申健, 徐大伟, 蔡雄翔, 2008. 基于钻孔数据的滑坡三维地质建模研究. 东华理工大学学报(自然科学版), 31(2): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200802006.htm
|
孙立群, 张鑫, 梁杏, 等, 2021. 洞庭盆地资水三角洲地区第四纪沉积环境判别及其特征. 地球科学, 46(9): 3245-3257. doi: 10.3799/dqkx.2020.357
|
王瑶, 张像源, 陈文杰, 等, 2017. 虚拟钻孔在深层三维地质建模中的应用. 城市地质, 12(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201702027.htm
|
熊祖强, 2007. 工程地质三维建模及可视化技术研究(博士学位论文). 武汉: 中国科学院研究生院(武汉岩土力学研究所).
|
易湘生, 李国胜, 尹衍雨, 等, 2012. 土壤厚度的空间插值方法比较——以青海三江源地区为例. 地理研究, 31(10): 1793-1805. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201210006.htm
|
张茂省, 唐亚明, 2008. 地质灾害风险调查的方法与实践. 地质通报, 27(8): 1205-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200808021.htm
|
朱大培, 牛文杰, 杨钦, 等, 2001. 地质构造的三维可视化. 北京航空航天大学学报, 27(4): 448-451. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200104017.htm
|