Citation: | Zhang Zhenchao, Liang Ying, Xu Jie, Jiang Xue, Ma Rui, 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189 |
Bahrami, M., Khaksar, E., Khaksar, E., 2020. Spatial Variation Assessment of Groundwater Quality Using Multivariate Statistical Analysis (Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3): 230-243. https://doi.org/10.19637/j.cnki.2305-7068.2020.03.004
|
Bhattacharya, P., Jacks, G., Ahmed, K. M., et al., 2002. Arsenic in Groundwater of the Bengal Delta Plain Aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4): 538-545. https://doi.org/10.1007/s00128-002-0095-5
|
Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. The Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
|
Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
|
Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
|
Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi-Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
|
Hsu, C. H., Han, S. T., Kao, Y. H., et al., 2010. Redox Characteristics and Zonation of Arsenic-Affected Multi-Layers Aquifers in the Choushui River Alluvial Fan, Taiwan. Journal of Hydrology, 391(3): 351-366. https://doi.org/10.1016/j.jhydrol.2010.07.037
|
Jiang, X., Ma, R., Ma, T., et al., 2022. Modeling the Effects of Water Diversion Projects on Surface Water and Groundwater Interactions in the Central Yangtze River Basin. Science of the Total Environment, 830: 154606. https://doi.org/10.1016/j.scitotenv.2022.154606
|
Kessler, A. J., Roberts, K. L., Bissett, A., et al., 2018. Biogeochemical Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Estuaries. Global Biogeochemical Cycles, 32(7): 1045-1057. https://doi.org/10.1029/2018gb005908
|
Li, J. C., Cao, W. G., Pan, D., et al., 2022. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain. Rock and Mineral Analysis, 41(1): 120-132 (in Chinese with English abstract).
|
Li, Q., Zhou, J. L., Zeng, Y. Y., 2017. Effects of Nitrogens on the Migration and Enrichment of Arsenic in the Groundwater in the Plain Area of Kuitun River and Manas River Basin. Environmental Chemistry, 36(10): 2227-2234 (in Chinese with English abstract).
|
Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain, Bulletin of Geological Science and Technology, 39(1): 21-33 (in Chinese with English abstract).
|
Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
|
Mayorga, P., Moyano, A., Anawar, H. M., et al., 2013. Temporal Variation of Arsenic and Nitrate Content in Groundwater of the Duero River Basin (Spain). Physics and Chemistry of the Earth, (58-60): 22-27. https://doi.org/10.1016/j.pce.2013.04.001
|
Nghiem, A. A., Shen, Y. T., Stahl, M., et al., 2020. Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science & Technology Letters, 7(12): 916-922. https://doi.org/10.1021/acs.estlett.0c00672
|
Nikolenko, O., Jurado, A., Borges, A. V., et al., 2018. Isotopic Composition of Nitrogen Species in Groundwater under Agricultural Areas: A Review. The Science of the Total Environment, 621: 1415-1432. https://doi.org/10.1016/j.scitotenv.2017.10.086
|
Perović, M., Šenk, I., Tarjan, L., et al., 2021. Machine Learning Models for Predicting the Ammonium Concentration in Alluvial Groundwaters. Environmental Modeling & Assessment, 26(2): 187-203. https://doi.org/10.1007/s10666-020-09731-9
|
Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
|
Roberts, K. L., Kessler, A. J., Grace, M. R., et al., 2014. Increased Rates of Dissimilatory Nitrate Reduction to Ammonium (DNRA) under Oxic Conditions in a Periodically Hypoxic Estuary. Geochimica et Cosmochimica Acta, 133: 313-324. https://doi.org/10.1016/j.gca.2014.02.042
|
Rütting, T., Boeckx, P., Müller, C., et al., 2011. Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle. Biogeosciences, 8(7): 1779-1791. https://doi.org/10.5194/bg-8-1779-201110.5194/bgd-8-1169-2011
|
Salk, K. R., Erler, D. V., Eyre, B. D., et al., 2017. Unexpectedly High Degree of Anammox and DNRA in Seagrass Sediments: Description and Application of a Revised Isotope Pairing Technique. Geochimica et Cosmochimica Acta, 211: 64-78. https://doi.org/10.1016/j.gca.2017.05.012
|
Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
|
Sun, Y., Lan, J. R., Chen, X. H., et al., 2021. Impacts of External Organic Carbon on Arsenic Release in Aquifer of Jianghan Plain, Central China. ACS Earth and Space Chemistry, 5(6): 1343-1354. https://doi.org/10.1021/acsearthspacechem.0c00358
|
Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13: 288-295. https://doi.org/10.1038/s41561-020-0557-6
|
Weng, T. N., Liu, C. W., Kao, Y. H., et al., 2017. Isotopic Evidence of Nitrogen Sources and Nitrogen Transformation in Arsenic-Contaminated Groundwater. The Science of the Total Environment, 578: 167-185. https://doi.org/10.1016/j.scitotenv.2016.11.013
|
Weng, H. C., 2019. Source, Transformation of Nitrogens and Significance for Arsenic Enrichment in High Arsenic Groudwater Based on Nitrogen and Oxygen Isotopes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Xie, Z. M., Wang, J., Wei, X. F., et al., 2018. Interactions between Arsenic Adsorption/Desorption and Indigenous Bacterial Activity in Shallow High Arsenic Aquifer Sediments from the Jianghan Plain, Central China. The Science of the Total Environment, 644: 382-388. https://doi.org/10.1016/j.scitotenv.2018.06.377
|
Xiong, F., Gan, Y. Q., Duan, Y. H., 2015. Analysis of Relationship between Nitrogen and the Migration and Enrichment of Arsenic in Groundwater in the Jianghan Plain. Safety and Environmental Engineering, 22(2): 39-43, 48 (in Chinese with English abstract).
|
Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
|
Xue, D. M., Botte, J., De Baets, B., et al., 2009. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Research, 43(5): 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048
|
Yang, J., Ye, M., Tang, Z. H., et al., 2020a. Using Cluster Analysis for Understanding Spatial and Temporal Patterns and Controlling Factors of Groundwater Geochemistry in a Regional Aquifer. Journal of Hydrology, 583: 124594. https://doi.org/10.1016/j.jhydrol.2020.124594
|
Yang, Y. J., Deng, Y. M., Xie, X. J., et al., 2020b. Iron Isotope Evidence for Arsenic Mobilization in Shallow Multi-Level Alluvial Aquifers of Jianghan Plain, Central China. Ecotoxicology and Environmental Safety, 206: 111120. https://doi.org/10.1016/j.ecoenv.2020.111120
|
Ye, H. P., Yang, Z. Y., Wu, X., et al., 2017. Sediment Biomarker, Bacterial Community Characterization of High Arsenic Aquifers in Jianghan Plain, China. Scientific Reports, 7: 42037. https://doi.org/10.1038/srep42037
|
Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208: 773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
|
Zaryab, A., Nassery, H. R., Knoeller, K., et al., 2022. Determining Nitrate Pollution Sources in the Kabul Plain Aquifer (Afghanistan) Using Stable Isotopes and Bayesian Stable Isotope Mixing Model. The Science of the Total Environment, 823: 153749. https://doi.org/10.1016/j.scitotenv.2022.153749
|
Zhang, J., Liang, X., Liu, Y. F., et al., 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
|
Zhu, X. B., 2020. Nitrate Transformations Catalyzed by the Arsenic Redox Microorganisms and Their Environmental Influences, China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Zhu, X. B., Zeng, X. C., Chen, X. M., et al., 2019. Inhibitory Effect of Nitrate/Nitrite on the Microbial Reductive Dissolution of Arsenic and Iron from Soils into Pore Water. Ecotoxicology, 28(5): 528-538. https://doi.org/10.1007/s10646-019-02050-0
|
Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843 (in Chinese with English abstract).
|
李谨丞, 曹文庚, 潘登, 等, 2022. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响. 岩矿测试, 41(1): 120-132.
|
李巧, 周金龙, 曾妍妍, 2017. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响. 环境化学, 36(10): 2227-2234.
|
梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报. 39(1): 21-33.
|
翁海成, 2019. 基于氮氧同位素的高砷地下水氮来源、转化及富砷意义(硕士学位论文), 北京: 中国地质大学.
|
熊峰, 甘义群, 段艳华, 2015. 江汉平原地下水中氮素与砷迁移富集的相关性研究. 安全与环境工程, 22(2): 39-43, 48.
|
徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
|
张洁, 梁杏, 刘延锋, 等, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
|
祝贤彬, 2020. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响(博士学位论文). 武汉: 中国地质大学.
|
朱子超, 刘慧, 毛胜军, 等, 2023. 河水‒地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
|
1. | 张安广,梁莹,马瑞. 地表水-地下水相互作用下NH_4-N的吸附/解吸行为及其对N迁移转化的影响. 地球科学. 2024(10): 3761-3772 . ![]() |