• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zhang Zhenchao, Liang Ying, Xu Jie, Jiang Xue, Ma Rui, 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    Citation: Zhang Zhenchao, Liang Ying, Xu Jie, Jiang Xue, Ma Rui, 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189

    Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content

    doi: 10.3799/dqkx.2022.189
    • Received Date: 2022-02-23
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • Groundwater with high As concentration often contains high NH4+ components,but few studies have been conducted to investigate the effect of nitrogen cycling on the migration and release of As. The aquifer system in Jianghan Plain contains high arsenic as well as high content of ammonium in groundwater. The purpose of this study is to explore the effect of nitrogen reactive transport on the As release. In this study,the different water bodies in Jianghan Plain were sampled and their hydrochemical and isotopic indexes were tested,and hierarchical cluster analysis was performed on the sampling sites using the physicochemical indexes related to nitrogen and arsenic. The results show that along the direction of groundwater flow,due to the changes of groundwater redox conditions,the effect of nitrogen redox process on arsenic release process is different. Near the groundwater recharge area,the enrichment of NO3 in the relatively oxidized zone inhibits the dissolution of iron oxide. Along the groundwater flow path,the redox environment of aquifer system changes from oxidized to reduced condition. The enhanced denitrification occurring in the reduced environment could promote the dissolution of iron oxide,resulting in the release of As into groundwater. The denitrification is further enhanced in the groundwater discharge zone,and denitrification and DNRA using Fe2+ as electron donor may influence arsenic release.

       

    • 致谢: 感谢匿名审稿专家提供的有益建议!
    • Bahrami, M., Khaksar, E., Khaksar, E., 2020. Spatial Variation Assessment of Groundwater Quality Using Multivariate Statistical Analysis (Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3): 230-243. https://doi.org/10.19637/j.cnki.2305-7068.2020.03.004
      Bhattacharya, P., Jacks, G., Ahmed, K. M., et al., 2002. Arsenic in Groundwater of the Bengal Delta Plain Aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4): 538-545. https://doi.org/10.1007/s00128-002-0095-5
      Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. The Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
      Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi-Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
      Hsu, C. H., Han, S. T., Kao, Y. H., et al., 2010. Redox Characteristics and Zonation of Arsenic-Affected Multi-Layers Aquifers in the Choushui River Alluvial Fan, Taiwan. Journal of Hydrology, 391(3): 351-366. https://doi.org/10.1016/j.jhydrol.2010.07.037
      Jiang, X., Ma, R., Ma, T., et al., 2022. Modeling the Effects of Water Diversion Projects on Surface Water and Groundwater Interactions in the Central Yangtze River Basin. Science of the Total Environment, 830: 154606. https://doi.org/10.1016/j.scitotenv.2022.154606
      Kessler, A. J., Roberts, K. L., Bissett, A., et al., 2018. Biogeochemical Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Estuaries. Global Biogeochemical Cycles, 32(7): 1045-1057. https://doi.org/10.1029/2018gb005908
      Li, J. C., Cao, W. G., Pan, D., et al., 2022. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain. Rock and Mineral Analysis, 41(1): 120-132 (in Chinese with English abstract).
      Li, Q., Zhou, J. L., Zeng, Y. Y., 2017. Effects of Nitrogens on the Migration and Enrichment of Arsenic in the Groundwater in the Plain Area of Kuitun River and Manas River Basin. Environmental Chemistry, 36(10): 2227-2234 (in Chinese with English abstract).
      Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain, Bulletin of Geological Science and Technology, 39(1): 21-33 (in Chinese with English abstract).
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Mayorga, P., Moyano, A., Anawar, H. M., et al., 2013. Temporal Variation of Arsenic and Nitrate Content in Groundwater of the Duero River Basin (Spain). Physics and Chemistry of the Earth, (58-60): 22-27. https://doi.org/10.1016/j.pce.2013.04.001
      Nghiem, A. A., Shen, Y. T., Stahl, M., et al., 2020. Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science & Technology Letters, 7(12): 916-922. https://doi.org/10.1021/acs.estlett.0c00672
      Nikolenko, O., Jurado, A., Borges, A. V., et al., 2018. Isotopic Composition of Nitrogen Species in Groundwater under Agricultural Areas: A Review. The Science of the Total Environment, 621: 1415-1432. https://doi.org/10.1016/j.scitotenv.2017.10.086
      Perović, M., Šenk, I., Tarjan, L., et al., 2021. Machine Learning Models for Predicting the Ammonium Concentration in Alluvial Groundwaters. Environmental Modeling & Assessment, 26(2): 187-203. https://doi.org/10.1007/s10666-020-09731-9
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Roberts, K. L., Kessler, A. J., Grace, M. R., et al., 2014. Increased Rates of Dissimilatory Nitrate Reduction to Ammonium (DNRA) under Oxic Conditions in a Periodically Hypoxic Estuary. Geochimica et Cosmochimica Acta, 133: 313-324. https://doi.org/10.1016/j.gca.2014.02.042
      Rütting, T., Boeckx, P., Müller, C., et al., 2011. Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle. Biogeosciences, 8(7): 1779-1791. https://doi.org/10.5194/bg-8-1779-201110.5194/bgd-8-1169-2011
      Salk, K. R., Erler, D. V., Eyre, B. D., et al., 2017. Unexpectedly High Degree of Anammox and DNRA in Seagrass Sediments: Description and Application of a Revised Isotope Pairing Technique. Geochimica et Cosmochimica Acta, 211: 64-78. https://doi.org/10.1016/j.gca.2017.05.012
      Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
      Sun, Y., Lan, J. R., Chen, X. H., et al., 2021. Impacts of External Organic Carbon on Arsenic Release in Aquifer of Jianghan Plain, Central China. ACS Earth and Space Chemistry, 5(6): 1343-1354. https://doi.org/10.1021/acsearthspacechem.0c00358
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13: 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Weng, T. N., Liu, C. W., Kao, Y. H., et al., 2017. Isotopic Evidence of Nitrogen Sources and Nitrogen Transformation in Arsenic-Contaminated Groundwater. The Science of the Total Environment, 578: 167-185. https://doi.org/10.1016/j.scitotenv.2016.11.013
      Weng, H. C., 2019. Source, Transformation of Nitrogens and Significance for Arsenic Enrichment in High Arsenic Groudwater Based on Nitrogen and Oxygen Isotopes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Xie, Z. M., Wang, J., Wei, X. F., et al., 2018. Interactions between Arsenic Adsorption/Desorption and Indigenous Bacterial Activity in Shallow High Arsenic Aquifer Sediments from the Jianghan Plain, Central China. The Science of the Total Environment, 644: 382-388. https://doi.org/10.1016/j.scitotenv.2018.06.377
      Xiong, F., Gan, Y. Q., Duan, Y. H., 2015. Analysis of Relationship between Nitrogen and the Migration and Enrichment of Arsenic in Groundwater in the Jianghan Plain. Safety and Environmental Engineering, 22(2): 39-43, 48 (in Chinese with English abstract).
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Xue, D. M., Botte, J., De Baets, B., et al., 2009. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Research, 43(5): 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048
      Yang, J., Ye, M., Tang, Z. H., et al., 2020a. Using Cluster Analysis for Understanding Spatial and Temporal Patterns and Controlling Factors of Groundwater Geochemistry in a Regional Aquifer. Journal of Hydrology, 583: 124594. https://doi.org/10.1016/j.jhydrol.2020.124594
      Yang, Y. J., Deng, Y. M., Xie, X. J., et al., 2020b. Iron Isotope Evidence for Arsenic Mobilization in Shallow Multi-Level Alluvial Aquifers of Jianghan Plain, Central China. Ecotoxicology and Environmental Safety, 206: 111120. https://doi.org/10.1016/j.ecoenv.2020.111120
      Ye, H. P., Yang, Z. Y., Wu, X., et al., 2017. Sediment Biomarker, Bacterial Community Characterization of High Arsenic Aquifers in Jianghan Plain, China. Scientific Reports, 7: 42037. https://doi.org/10.1038/srep42037
      Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208: 773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
      Zaryab, A., Nassery, H. R., Knoeller, K., et al., 2022. Determining Nitrate Pollution Sources in the Kabul Plain Aquifer (Afghanistan) Using Stable Isotopes and Bayesian Stable Isotope Mixing Model. The Science of the Total Environment, 823: 153749. https://doi.org/10.1016/j.scitotenv.2022.153749
      Zhang, J., Liang, X., Liu, Y. F., et al., 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhu, X. B., 2020. Nitrate Transformations Catalyzed by the Arsenic Redox Microorganisms and Their Environmental Influences, China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhu, X. B., Zeng, X. C., Chen, X. M., et al., 2019. Inhibitory Effect of Nitrate/Nitrite on the Microbial Reductive Dissolution of Arsenic and Iron from Soils into Pore Water. Ecotoxicology, 28(5): 528-538. https://doi.org/10.1007/s10646-019-02050-0
      Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843 (in Chinese with English abstract).
      李谨丞, 曹文庚, 潘登, 等, 2022. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响. 岩矿测试, 41(1): 120-132.
      李巧, 周金龙, 曾妍妍, 2017. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响. 环境化学, 36(10): 2227-2234.
      梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报. 39(1): 21-33.
      翁海成, 2019. 基于氮氧同位素的高砷地下水氮来源、转化及富砷意义(硕士学位论文), 北京: 中国地质大学.
      熊峰, 甘义群, 段艳华, 2015. 江汉平原地下水中氮素与砷迁移富集的相关性研究. 安全与环境工程, 22(2): 39-43, 48.
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张洁, 梁杏, 刘延锋, 等, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      祝贤彬, 2020. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响(博士学位论文). 武汉: 中国地质大学.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水‒地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    • Relative Articles

    • Cited by

      Periodical cited type(1)

      1. 张安广,梁莹,马瑞. 地表水-地下水相互作用下NH_4-N的吸附/解吸行为及其对N迁移转化的影响. 地球科学. 2024(10): 3761-3772 . 本站查看

      Other cited types(0)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060255075100
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.5 %FULLTEXT: 29.5 %META: 62.4 %META: 62.4 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.6 %其他: 16.6 %其他: 0.5 %其他: 0.5 %Russian Federation: 0.4 %Russian Federation: 0.4 %Seattle: 0.2 %Seattle: 0.2 %上海: 0.4 %上海: 0.4 %乌鲁木齐: 2.0 %乌鲁木齐: 2.0 %乐山: 0.9 %乐山: 0.9 %佛山: 0.7 %佛山: 0.7 %俄勒冈: 0.7 %俄勒冈: 0.7 %兰州: 0.2 %兰州: 0.2 %北京: 6.5 %北京: 6.5 %十堰: 0.9 %十堰: 0.9 %南京: 8.3 %南京: 8.3 %南昌: 0.5 %南昌: 0.5 %南通: 0.2 %南通: 0.2 %台州: 0.7 %台州: 0.7 %吉安: 0.4 %吉安: 0.4 %嘉兴: 0.7 %嘉兴: 0.7 %天津: 2.4 %天津: 2.4 %安康: 0.2 %安康: 0.2 %宣城: 0.5 %宣城: 0.5 %常州: 0.9 %常州: 0.9 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.9 %广州: 0.9 %张家口: 2.9 %张家口: 2.9 %徐州: 1.8 %徐州: 1.8 %德州: 0.5 %德州: 0.5 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %昆明: 1.8 %昆明: 1.8 %杭州: 1.3 %杭州: 1.3 %柳州: 0.5 %柳州: 0.5 %武汉: 2.5 %武汉: 2.5 %池州: 0.4 %池州: 0.4 %泰安: 0.2 %泰安: 0.2 %济南: 0.9 %济南: 0.9 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 1.8 %温州: 1.8 %湖州: 0.7 %湖州: 0.7 %漯河: 3.4 %漯河: 3.4 %瓦加杜古: 0.5 %瓦加杜古: 0.5 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.4 %石家庄: 0.4 %纳什维尔: 0.5 %纳什维尔: 0.5 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 1.6 %芝加哥: 1.6 %莫斯科: 0.2 %莫斯科: 0.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 6.5 %西宁: 6.5 %西安: 0.9 %西安: 0.9 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.4 %运城: 1.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %铜仁: 0.4 %铜仁: 0.4 %银川: 1.1 %银川: 1.1 %镇江: 0.4 %镇江: 0.4 %长沙: 0.9 %长沙: 0.9 %阿默斯福特: 0.7 %阿默斯福特: 0.7 %黄石: 0.4 %黄石: 0.4 %其他其他Russian FederationSeattle上海乌鲁木齐乐山佛山俄勒冈兰州北京十堰南京南昌南通台州吉安嘉兴天津安康宣城常州平顶山广州张家口徐州德州成都扬州昆明杭州柳州武汉池州泰安济南淄博深圳温州湖州漯河瓦加杜古盐城石家庄纳什维尔芒廷维尤芝加哥莫斯科萍乡衡阳衢州西宁西安诺沃克贵阳运城遵义邯郸郑州重庆铜仁银川镇江长沙阿默斯福特黄石

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (341) PDF downloads(46) Cited by(1)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return