• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Zeng Lianbo, Ma Shijie, Tian He, Xue Meng, Liu Guoping, Lü Wenya, 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190
    Citation: Zeng Lianbo, Ma Shijie, Tian He, Xue Meng, Liu Guoping, Lü Wenya, 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190

    Research Progress of Natural Fractures in Organic Rich Shale

    doi: 10.3799/dqkx.2022.190
    • Received Date: 2021-12-31
    • Publish Date: 2023-07-25
    • Natural fracture is an important reservoir space and main seepage channel of organic rich shale oil and gas reservoir, which affects the enrichment, preservation, single well productivity and development effect of shale oil and gas. The research on the development law of natural fracture is of great significance to the exploration and development of organic rich shale oil and gas. Based on the research results of marine and continental organic rich shale fractures in recent years, this paper summarizes the latest progress in the genetic types, development characteristics, main control factors, evaluation and prediction methods of organic rich shale natural fractures, and finally discusses the key research directions of organic rich shale natural fractures in the future. The natural fractures of organic rich shale can be divided into three categories and six sub categories: tectonic fractures, diagenetic fractures and abnormally high-pressure-related fractures. The main fracture types are intraformational open fractures, transformational shear fractures, bed-parallel shear fractures and bed-parallel lamellated fractures. The development degree of shale tectonic fractures is mainly controlled by brittle mineral content, organic matter content, high brittle shale layer thickness, structure, formation dip angle and fluid pressure. The formation and development of bed-parallel lamellated fractures are mainly affected by organic matter content, lamina type, lamina number, lamina thickness and later tectonic uplift. Due to the differences in mineral composition, lithofacies changes and thermal evolution of organic matter caused by different sedimentary environments between continental shale and marine shale, the development characteristics of fractures between continental shale and marine shale are obviously different. Compared with marine shale fractures, the distribution pattern of continental shale fractures is more complex, the scale of tectonic fractures is smaller, and the development degree of cross layer shear fractures and bedding shear fractures is low. At present, the evaluation and prediction of shale fractures are mainly carried out with the help of the existing conventional research methods of tectonic fractures in low-permeability tight reservoirs. How to combine geology, geophysics and machine learning to form a classification evaluation and prediction method suitable for different scales and types of shale fractures according to the characteristics of small scale of shale fractures and development of bed-parallel lamellated fractures, It is very important to improve the evaluation and prediction accuracy of shale fractures and better guide oil and gas development. The development law of deep organic rich shale fractures, the influence of natural fractures on hydraulic fracturing fractures, and the three-dimensional geological modeling of complex fracture network system integrating multi-scale, multi occurrence and multi Genesis shale fractures will also be important problems to be solved in the research of shale fractures in the future.

       

    • loading
    • Bons, P. D., Elburg, M. A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology, 43: 33-62. https://doi.org/10.1016/j.jsg.2012.07.005
      Cobbold, P. R., Zanella, A., Rodrigues, N., et al., 2013. Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone): Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization. Marine and Petroleum Geology, 43: 1-20. https://doi.org/10.1016/j.marpetgeo.2013.01.010
      Ding, P. B., Gong, F., Zhang, F., et al., 2021. A Physical Model Study of Shale Seismic Responses and Anisotropic Inversion. Petroleum Science, 18: 1059-1068. https://doi.org/10.1016/j.petsci.2021.01.001
      Ding, W. L., Xu, C. C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract).
      Dong, D. Z., Shi, Z. S., Sun, S. S., et al., 2018. Factors Controlling Microfractures in Black Shale: A Case Study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 763-774 (in Chinese with English abstract).
      Dong, S. Q., Zeng, L. B., Cao, H., et al., 2018. Principle and Implementation of Discrete Fracture Network Modeling Controlled by Fracture Density. Geological Review, 64(5): 1302-1313 (in Chinese with English abstract).
      Dong, S. Q., Zeng, L. B., Lyu, W. Y., et al., 2020. Fracture Identification by Semi-Supervised Learning Using Conventional Logs in Tight Sandstones of Ordos Basin, China. Journal of Natural Gas Science and Engineering, 76: 103131. https://doi.org/10.1016/j.jngse.2019.103131
      Emmanuel, S., Eliyahu, M., Day-Stirrat, R. J., et al., 2016. Impact of Thermal Maturation on Nano-Scale Elastic Properties of Organic Matter in Shales. Marine and Petroleum Geology, 70: 175-184. https://doi.org/10.1016/j.marpetgeo.2015.12.001
      Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      Gale, J. F. W., Reed, R. M., Holder, J., 2007. Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments. AAPG Bulletin, 91(4): 603-622. https://doi.org/10.1306/11010606061
      Gong, L., Wang, J., Gao, S., et al., 2021. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203(2): 108655. https://doi.org/10.1016/j.petrol.2021.108655
      Gou, Q. Y., 2017. Application of Fracture Prediction Technology Based on Stack Front Anisotropy in Shale Reservoir. China Petrochem, (3): 26-27 (in Chinese with English abstract).
      Gou, Q. Y., Xu, S., Hao, F., et al., 2019. Study on Characterization of Micro-Fracture of Shale Based on Micro-CT. Acta Geologica Sinica, 93(9): 2372-2382 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.09.018
      Guo, X. S., Hu, D. F., Huang, R. C., et al., 2020. Deep and Ultra-Deep Natural Gas Exploration in the Sichuan Basin: Progress and Prospect. Natural Gas Industry, 40(5): 1-14 (in Chinese with English abstract).
      Guo, X. S., Hu, D. F., Wei, X. F., et al., 2016. Main Controlling Factors on Shale Fractures and Their Influences on Production Capacity in Jiaoshiba Area, the Sichuan Basin. Oil & Gas Geology, 37(6): 799-808 (in Chinese with English abstract).
      He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract).
      Hedberg, H. D., 1974. Relation of Methane Generation to Undercompacted Shales, Shale Diapirs, and Mud Volcanoes. AAPG Bulletin, 58(4): 661-673. https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D
      Jin, Z. J., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10 (in Chinese with English abstract).
      Jin, Z. J., Wang, G. P., Liu, G. X., et al., 2021. Research Progress and Key Scientific Issues of Continental Shale Oil in China. Acta Petrolei Sinica, 42(7): 821-835 (in Chinese with English abstract).
      Kalani, M., Jahren, J., Mondol, N. H., et al., 2015. Petrophysical Implications of Source Rock Microfracturing. International Journal of Coal Geology, 143: 43-67. https://doi.org/10.1016/j.coal.2015.03.009
      Lin, C. M., Wang, H. Y., Liang, P. P., et al., 2019. The Characteristics of Laminae and Its Reservoir Significance in Black Shale: Taking the Wufeng-Longmaxi Formations in the Changning-Shuanghe Section as an Example. Journal of Stratigraphy, 43(2): 133-140 (in Chinese with English abstract).
      Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300 (in Chinese with English abstract).
      Nelson, R. A., 1985. Geologic Analysis of Naturally Fractured Reservoirs: Contributions in Petroleum Geology and Engineering. Gulf Publishing Company, Houston, 320.
      Sun, J., Bao, H. Y., 2018. Comprehensive Characterization of Shale Gas Reservoirs: A Case Study from Fuling Shale Gas Field. Petroleum Geology & Experiment, 40(1): 1-12 (in Chinese with English abstract).
      Tang, X. M., Li, S. Q., Xu, S., et al., 2017. Acoustic Characterization and Imaging of Shale Gas Fractures in Horizontal Wells: Field Case Study in the Sichuan Basin of Southwest China. Well Logging Technology, 41(5): 501-505 (in Chinese with English abstract).
      Teixeira, M. G., Donzé, F., Renard, F., et al., 2017. Microfracturing during Primary Migration in Shales. Tectonophysics, 694: 268-279. https://doi.org/10.1016/j.tecto.2016.11.010
      Tian, H., Zeng, L. B., Shu, Z. G., et al., 2019. Method for Determining Elastic Parameters for the Prediction Model of Shale Transversely Isotropic Geostress. Journal of Geomechanics, 25(2): 166-176 (in Chinese with English abstract).
      Tian, H., Zeng, L. B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract).
      Tian, H., Zeng, L. B., Xu, X., et al., 2021. Factors Influencing the In-Situ Stress Orientations in Shales: A Case Study of the Wufeng-Longmaxi Formations in the Jiaoshiba Area, Southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 94: 104110. https://doi.org/10.1016/j.jngse.2021.104110
      Wang, M., Chen, Y., Xu, X. Y., et al., 2015. Progress on Formation Mechanism of the Fibrous Veins in Mudstone and Its Implications to Hydrocarbon Migration. Advances in Earth Science, 30(10): 1107-1118 (in Chinese with English abstract).
      Wang, M. A., Chen, Y., Bain, W. M., et al., 2020. Direct Evidence for Fluid Overpressure during Hydrocarbon Generation and Expulsion from Organic-Rich Shales. Geology, 48(4): 374-378. https://doi.org/10.1130/g46650.1
      Wang, R. Y., Hu, Z. Q., Liu, J. S., et al., 2018. Comparative Analysis of Characteristics and Controlling Factors of Fractures in Marine and Continental Shales: A Case Study of the Lower Cambrian in Cengong Area, Northern Guizhou Province. Oil & Gas Geology, 39(4): 631-640 (in Chinese with English abstract).
      Wu, J. F., Zhao, S. X., Fan, C. H., et al., 2021. Fracture Characteristics of the Longmaxi Formation Shale and Its Relationship with Gas-Bearing Properties in Changning Area, Southern Sichuan. Acta Petrolei Sinica, 42(4): 428-446 (in Chinese with English abstract).
      Xu, X., Zeng, L. B., Tian, H., et al., 2021. Controlling Factors of Lamellation Fractures in Marine Shales: A Case Study of the Fuling Area in Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 207: 109091. https://doi.org/10.1016/j.petrol.2021.109091
      Yuan, Y. S., Liu, J. X., Zhou, Y., 2018. Brittle-Ductile Transition Zone of Shale and Its Implications in Shale Gas Exploration. Oil & Gas Geology, 39(5): 899-906 (in Chinese with English abstract).
      Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048
      Zeng, L. B., 2008. Formation and Distribution of Fractures in Low Permeability Sandstone Reservoirs. Science Press, Beijing (in Chinese).
      Zeng, L. B., Lyu, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract).
      Zeng, L. B., Shu, Z. G., Lyu, W. Y., et al., 2021. Lamellation Fractures in the Paleogene Continental Shale Oil Reservoirs in the Qianjiang Depression, Jianghan Basin, China. Geofluids, (5): 1-10. https://doi.org/10.1155/2021/6653299
      Zeng, L. B., Xiao, S., 1999. Fractures in the Mudstone of Tight Reservoirs. Experimental Petroleum Geology, 21(3): 266-269 (in Chinese with English abstract).
      Zeng, W. T., Ding, W. L., Zhang, J. C., et al., 2013. Fracture Development in Paleozoic Shale of Chongqing Area (South China). Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Fractures Distribution. Journal of Asian Earth Sciences, 75: 267-279. https://doi.org/10.1016/j.jseaes.2013.07.015
      Zhan, S. F., Chen, M. S., Li, L., et al., 2015. OVT-Domain Wide-Azimuth Prestack Seismic Attribute Analysis. Oil Geophysical Prospecting, 50(5): 956-966 (in Chinese with English abstract).
      Zhao, W. Z., Jia, A. L., Wei, Y. S., et al., 2020a. Progress in Shale Gas Exploration in China and Prospects for Future Development. China Petroleum Exploration, 25(1): 31-44 (in Chinese with English abstract).
      Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020b. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5
      Zou, C. N., Pan, S. Q., Jing, Z. H., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12 (in Chinese with English abstract). doi: 10.1038/s41401-019-0299-4
      Zou, C. N., Zhao, Q., Cong, L. Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract).
      丁文龙, 许长春, 久凯, 等, 2011. 泥页岩裂缝研究进展. 地球科学进展, 26(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201102003.htm
      董大忠, 施振生, 孙莎莎, 等, 2018. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组‒龙马溪组为例. 石油勘探与开发, 45(5): 763-774. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm
      董少群, 曾联波, 曹菡, 等, 2018. 裂缝密度约束的离散裂缝网络建模方法与实现. 地质论评, 64(5): 1302-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201805023.htm
      苟其勇, 2017. 基于叠前方位各向异性的裂缝预测技术在页岩储层中的应用. 中国石油石化, (3): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZG201703014.htm
      苟启洋, 徐尚, 郝芳, 等, 2019. 基于微米CT页岩微裂缝表征方法研究. 地质学报, 93(9): 2372-2382. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909018.htm
      郭旭升, 胡东风, 黄仁春, 等, 2020. 四川盆地深层‒超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htm
      郭旭升, 胡东风, 魏祥峰, 等, 2016. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响. 石油与天然气地质, 37(6): 799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606002.htm
      何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
      金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组‒龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
      金之钧, 王冠平, 刘光祥, 等, 2021. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
      林长木, 王红岩, 梁萍萍, 等, 2019. 川南地区五峰组‒龙马溪组黑色页岩纹层特征及其储集意义. 地层学杂志, 43(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201902002.htm
      刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
      孙健, 包汉勇, 2018. 页岩气储层综合表征技术研究进展——以涪陵页岩气田为例. 石油实验地质, 40(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801002.htm
      唐晓明, 李盛清, 许松, 等, 2017. 页岩气藏水平测井裂缝识别及声学成像研究. 测井技术, 41(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201705001.htm
      田鹤, 曾联波, 舒志国, 等, 2019. 页岩横向各向同性地应力预测模型中弹性参数的确定方法. 地质力学学报, 25(2): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902058.htm
      田鹤, 曾联波, 徐翔, 等, 2020. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响. 石油与天然气地质, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm
      王淼, 陈勇, 徐兴友, 等, 2015. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展. 地球科学进展, 30(10): 1107-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201510008.htm
      王濡岳, 胡宗全, 刘敬寿, 等, 2018. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例. 石油与天然气地质, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htm
      吴建发, 赵圣贤, 范存辉, 等, 2021. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系. 石油学报, 42(4): 428-446.
      袁玉松, 刘俊新, 周雁, 2018. 泥页岩脆‒延转化带及其在页岩气勘探中的意义. 石油与天然气地质, 39(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm
      曾联波, 2008. 低渗透砂岩储层裂缝的形成与分布. 北京: 科学出版社.
      曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003002.htm
      曾联波, 肖淑蓉, 1999. 低渗透储集层中的泥岩裂缝储集体. 石油实验地质, 21(3): 266-269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199903014.htm
      詹仕凡, 陈茂山, 李磊, 等, 2015. OVT域宽方位叠前地震属性分析方法. 石油地球物理勘探, 50(5): 956-966. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201505027.htm
      赵文智, 贾爱林, 位云生, 等, 2020a. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001004.htm
      赵文智, 胡素云, 侯连华, 等, 2020b. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
      邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
      邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (784) PDF downloads(207) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return