• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Liu Bin, Xu Yu, Ma Changqian, Li Fulin, Zhao Shaoqing, Zhan Junming, Sun Yang, Huang Jian, 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
    Citation: Liu Bin, Xu Yu, Ma Changqian, Li Fulin, Zhao Shaoqing, Zhan Junming, Sun Yang, Huang Jian, 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191

    Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane

    doi: 10.3799/dqkx.2022.191
    • Received Date: 2022-03-22
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Triassic intermediate to acid magmatism is widely distributed in the central Tibetan Plateau (including the North Qiangtang terrane). However, the magma origin, petrogenesis and geodynamic mechanism of the magmas are still poorly understood. This paper presents an integrated study of zircon U-Pb geochronology, whole-rock and isotopic geochemistry for the Ningduo peraluminous granites from the North Qiangtang terrane, aiming to provide new insights into the generation of peraluminous granites and the Triassic tectonic-magmatic evolution of the central Tibetan Plateau. The lithology of the Ningduo peraluminous granites is biotite granodiorite, which is mainly composed of plagioclase (35%-40%), quartz (25%-30%), K-feldspar (15%-20%), and biotite (5%-10%). The crystallization age of the Ningduo granites is 248±1 Ma, which could be considered as the products of the Early Triassic magmatism. The Ningduo granites have moderate contents of SiO2 and MgO, and relatively high contents of K and Al, which can be comparable to those of typical strongly peraluminous granites. All the samples are featured with enrichment of large ion lithophile elements (e.g., Rb, K) and light rare earth elements, and depletion of high field strength elements (e.g., Nb, Ta, Ti, and P), relative to the primitive mantle. They have relatively high ISr ratios of 0.720-0.722, low εNd(t) values of -12.4 to -12.3, and old T2DM ages of 2.02-2.03 Ga, similar to those of the Proterozoic gneisses and Precambrian basement-derived S-type granites. The Ningduo granites have remarkable high zirconium saturation temperatures (806-845 ℃) and Ti-in-zircon temperatures (830-1 033 ℃), similar to those of typical high-temperature granites worldwide. The results indicate that the Ningduo granites were derived from partial melting of Precambrian basement rocks (greywacke and minor pelite rocks) under a high temperature condition. During the subduction of the Longmuco-Shuanghu Ocean, slab rollback triggered the back-arc extension and intense basaltic underplating, and then induced the high-temperature melting of Precambrian basement rocks.

       

    • loading
    • Altherr, R., Siebel, W., 2002. Ⅰ-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous Ⅰ-Type Granites. Lithos, 153: 142-153. https://doi.org/10.1016/j.lithos.2012.07.008
      Chappell, B. W., White, A. J. R., 1992. Ⅰ- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh-Earth Sciences, 83(1-2): 1-26. http://dx. doi.org/10.1017/S0263593300007720
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Clarke, D. B., 1981. The Mineralogy of Peraluminous Granites: A Review. Canadian Mineralogist, 19: 3-17
      Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
      Dan, W., Wang, Q., White, W. M., et al., 2018. Rapid Formation of Eclogites during a nearly Closed Ocean: Revisiting the Pianshishan Eclogite in Qiangtang, Central Tibetan Plateau. Chemical Geology, 477: 112-122. https://doi.org/10.1016/j.chemgeo.2017.12.012
      de Sigoyer, J., Vanderhaeghe, O., Duchêne, S., et al., 2014. Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192-216. https://doi.org/10.1016/j.jseaes.2014.01.010
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162.
      He, S. P., Li, R. S., Wang, C., et al., 2011. Discovery of ∼4.0 Ga Detrital Zircons in the Changdu Block, North Qiangtang, Tibetan Plateau. Chinese Science Bulletin, 56(7): 647-658. https://doi.org/10.1007/s11434-010-4320-z
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Kapp, P., Yin, A., Manning, C. E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22(4): 1043. https://doi.org/10.1029/2002TC001383
      Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 136-147 (in Chinese with English abstract).
      Li, C., Zhai, Q. G., Dong, Y. S., et al., 2008. Oceanic Crust on the Northern Margin of Gond-Wana-Evidence from Early Paleozoic Ophiolite in Central Qiangtang, Qinghai-Tibet Plateau. Geological Bulletin of China, 27(10): 1605-1612 (in Chinese with English abstract).
      Li, S., Miller, C. F., Tao, W., et al., 2021. Role of Sediment in Generating Contemporaneous, Diverse "Type" Granitoid Magmas. Geology, 50(4): 427-431. http://dx. doi.org/10.1130/G49509.1.
      Lin, G. C., Ma, C. Q., 2003. Genesis of Peraluminous Granitoids and Their Tectonic Settings. Geology and Mineral Resources of South China, 19(1): 65-70 (in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962 (in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2016a. Evaluation of Late Permian Mafic Magmatism in the Central Tibetan Plateau as a Response to Plume-Subduction Interaction. Lithos, 264: 1-16. https://doi.org/10.1016/j.lithos.2016.08.011
      Liu, B., Ma, C. Q., Guo, Y. H., et al., 2016b. Petrogenesis and Tectonic Implications of Triassic Mafic Complexes with MORB/OIB Affinities from the Western Garzê-Litang Ophiolitic Mélange, Central Tibetan Plateau. Lithos, 260: 253-267. https://doi.org/10.1016/j.lithos.2016.06.009
      Liu, B., Ma, C. Q., Huang, J., et al., 2016. Petrogenetic Mechanism and Tectonic Significance of Triassic Yushu Volcanic Rocks in the Northern Part of the North Qiangtang Terrane. Acta Petrologica et Mineralogica, 35(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2016.01.001
      Liu, B., Ma, C. Q., Tang, Y. J., et al., 2021. Triassic High-Mg Andesitic Magmatism Induced by Sediment Melt-Peridotite Interactions in the Central Tibetan Plateau. Lithos, 398-399: 106266. https://doi.org/10.1016/j.lithos.2021.106266
      Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract).
      Liu, B., Xu, Y., Li, Q. A., et al., 2020. Origin of Triassic Mafic Magmatism in the North Qiangtang Terrane, Central Tibetan Plateau: Implications for the Development of a Continental Back-Arc Basin. Journal of the Geological Society, 177(4): 826-842. https://doi.org/10.1144/jgs2019-130
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51: 537-571. https://doi.org/10.1093/petrology/egp082.
      Liu, Y., Zong, K., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks From the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247: 133-153. https://doi.org/10.1016/ j.chemgeo.2007.10.016. doi: 10.1016/j.chemgeo.2007.10.016
      Lu, L., Qin, Y., Li, Z. F., et al., 2019. Diachronous Closure of the Shuanghu Paleo-Tethys Ocean: Constraints from the Late Triassic Tanggula Arc-Related Volcanism in the East Qiangtang Subterrane, Central Tibet. Lithos, 328-329: 182-199. https://doi.org/10.1016/j.lithos.2019.01.034
      Lu, L., Zhang, K. J., Yan, L. L., et al., 2017. Was Late Triassic Tanggula Granitoid (Central Tibet, Western China) a Product of Melting of Underthrust Songpan-Ganzi Flysch Sediments? Tectonics, 36(5): 902-928. https://doi.org/10.1002/2016tc004384
      Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assemblyand Granitic Petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Mo, X. X., 2010. A Review and Prospect of Geological Researches on the Qinghai-Tibet Plateau. Geology in China, 37(4): 841-853 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.04.002
      Moecher, D. P., McDowell, S. M., Samson, S. D., et al., 2014. Ti-in-Zircon Thermometry and Crystallization Modeling Support Hot Grenville Granite Hypothesis. Geology, 42(3): 267-270. https://doi.org/10.1130/g35156.1
      Nie, S. Y., Yin, A., Rowley, D. B., et al., 1994. Exhumation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China. Geology, 22(11): 999-1002. https://doi.org/10.1130/0091-7613(1994)0220999: eotdsu>2.3.co;2 doi: 10.1130/0091-7613(1994)0220999:eotdsu>2.3.co;2
      Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2015. Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: Geochronology, Petrogenesis and Implications for the Tectonic Evolution of the Paleo-Tethys. Gondwana Research, 27(4): 1494-1508. https://doi.org/10.1016/j.gr.2014.01.009
      Schiller, D., Finger, F., 2019. Application of Ti-in-Zircon Thermometry to Granite Studies: Problems and Possible Solutions. Contributions to Mineralogy and Petrology, 174(6): 1-16. https://doi.org/10.1007/s00410-019-1585-3
      Shand, S. J., 1927. Eruptive Rocks (1st Edition). John Wiley & Sons, Inc., New York. http://dx.doi.org/10.1097/00010694-194807000-00012
      She, Z. B., Ma, C. Q., Mason, R., et al., 2006. Provenance of the Triassic Songpan-Ganzi Flysch, West China. Chemical Geology, 231(1-2): 159-175. https://doi.org/10.1016/j.chemgeo.2006.01.001
      Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1-4): 331-344. https://doi.org/10.1016/0009-2541(94)90135-X
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      Tao, Y., Bi, X. W., Li, C. S., et al., 2014. Geochronology, Petrogenesis and Tectonic Significance of the Jitang Granitic Pluton in Eastern Tibet, SW China. Lithos, 184-187: 314-323. https://doi.org/10.1016/j.lithos.2013.10.031
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust Its Composition and Evolution. Blackwell Scientific Publications, Oxford. https://doi.org/10.1002/gj.3350210116
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. https://doi.org/10.1007/s00410-007-0253-1
      Wang, X. L., 2017. Some New Research Progresses and Main Scientific Problems of Granitic Rocks. Acta Petrologica Sinica, 33(5): 1445-1458 (in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. https://doi.org/10.1017/s0016756800058222
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese).
      Wu, T., Zhou, J. X., Wang, X. C., et al., 2018. Identification of Ca. 850 Ma High-Temperature Strongly Peraluminous Granitoids in Southeastern Guizhou Province, South China: A Result of Early Extension along the Southern Margin of the Yangtze Block. Precambrian Research, 308: 18-34. https://doi.org/10.1016/j.precamres.2018.02.007
      Xu, X. S., Wang, X. L., Zhao, K., et al., 2020. Progresses and Tendencies of Granite Researches in last Decade: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 39(5): 899-911, 1069 (in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract).
      Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo-Triassic Arc Magmatism in Central Tibet: Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3-4): 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zen, E. A., 1988. Phase Relations of Peraluminous Granitic Rocks and Their Petrogenetic Implications. Annual Review of Earth and Planetary Sciences, 16: 21-51. https://doi.org/10.1146/annurev.ea.16.050188.000321
      Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13): 1414-1420 (in Chinese). doi: 10.1360/N972015-01272
      Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013a. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63: 162-178. https://doi.org/10.1016/j.jseaes.2012.08.025
      Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2013b. The Carboniferous Ophiolite in the Middle of the Qiangtang Terrane, Northern Tibet: SHRIMP U-Pb Dating, Geochemical and Sr-Nd-Hf Isotopic Characteristics. Lithos, 168-169: 186-199. https://doi.org/10.1016/j.lithos.2013.02.005
      Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1-2): 173-189. https://doi.org/10.1016/j.lithos.2011.02.004
      Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan Continental Tectonic Node in China's Continental Tectonics. Earth Science Frontiers, 11(3): 23-32 (in Chinese with English abstract).
      Zhang, K. J., Zhang, Y. X., Li, B., et al., 2007. Nd Isotopes of Siliciclastic Rocks from Tibet, Western China: Constraints on Provenance and Pre-Cenozoic Tectonic Evolution. Earth and Planetary Science Letters, 256(3-4): 604-616. https://doi.org/10.1016/j.epsl.2007.02.014
      Zhang, Q., Wang, Y., Pan, G. Q., et al., 2008. Sources of Granites: Some Crucial Questions on Granite Study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract).
      李才, 黄小鹏, 翟庆国, 等, 2006. 龙木错‒双湖‒吉塘板块缝合带与青藏高原冈瓦纳北界. 地学前缘, 13(4): 136-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604011.htm
      李才, 翟庆国, 董永胜, 等, 2008. 冈瓦纳大陆北缘早期的洋壳信息: 来自青藏高原羌塘中部早古生代蛇绿岩的依据. 地质通报, 27(10): 1605-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810004.htm
      林广春, 马昌前, 2003. 过铝花岗岩的成因类型与构造环境研究综述. 华南地质与矿产, 19(1): 65-70. doi: 10.3969/j.issn.1007-3701.2003.01.013
      刘彬, 马昌前, 郭盼, 等, 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
      刘彬, 马昌前, 黄坚, 等, 2016. 北羌塘北缘玉树三叠纪火山岩的成因机制及其构造意义. 岩石矿物学杂志, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201601001.htm
      刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
      莫宣学, 2010. 青藏高原地质研究的回顾与展望. 中国地质, 37(4): 841-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004004.htm
      王孝磊, 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705005.htm
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202201006.htm
      徐夕生, 王孝磊, 赵凯, 等, 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39(5): 899-911, 1069. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202005002.htm
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革. 科学通报, 61(13): 1414-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201613005.htm
      张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11(3): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403004.htm
      张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题: 关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705008.htm
    • dqkxzx-48-9-3296-附表1-2.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (502) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return