• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Lei Ming, Chen Tao, Han Qianfeng, Cheng Muwei, Gao Geng, Sha Xuemei, Zhang Yajun, 2023. A New Method for Calculating Fracture Porosity Based on Conventional Logging Data. Earth Science, 48(7): 2678-2689. doi: 10.3799/dqkx.2022.202
    Citation: Lei Ming, Chen Tao, Han Qianfeng, Cheng Muwei, Gao Geng, Sha Xuemei, Zhang Yajun, 2023. A New Method for Calculating Fracture Porosity Based on Conventional Logging Data. Earth Science, 48(7): 2678-2689. doi: 10.3799/dqkx.2022.202

    A New Method for Calculating Fracture Porosity Based on Conventional Logging Data

    doi: 10.3799/dqkx.2022.202
    • Received Date: 2022-01-20
    • Publish Date: 2023-07-25
    • Fracture as reservoir space and migration channel of oil and gas, is an important part of the fracture reservoir study, so that, fracture porosity is the most important parameter in fracture reservoir logging evaluation. Although there are many qualitative identification and description methods, but how to use conventional log data to quantitatively calculate fracture porosity has always been a difficult problem in fracture reservoir interpretation. A new method for calculating fracture porosity based on conventional logging data of probabilistic neural network is proposed in this study, taking a reservoir of a gas field in the Amu Darya Basin as an example. The reservoir in Upper Jurassic Callovian-Oxfordian order group is located on the platform margin slope, with relatively high energy beach facies and high beach complex fracture-pore type. To calculate fracture porosity of the wells which have imaging well logging data, first, a variety of classic model methods are used to calculate fracture porosity with dual laterolog resistivity data, comprehensive with the acoustic data and density data. Then the weighted factor to weighted the fracture porosity is calculated by those kinds of models, and the weighted calculation result is calibrated using the accurate fracture porosity calculated by imaging logging data as a constraint to get the final fracture porosity curve. For the wells which do not have imaging well logging data, using probabilistic neural network algorithm of deep learning to establish the mapping relation between the calculated fracture porosity curve from imaging logging data and conventional well logging data, so that the fracture porosity curve of other wells can be calculated, and the calculation error can be determined by using cross validation criterion. The results show that the fracture porosity calculated by this new method is in good agreement with the fracture porosity interpreted by imaging logging. For the wells without imaging logging data, after the lateral extrapolation calculation, according to the actual lost circulation of the target interval, the analysis of production performance data and the verification and comparison of reservoir parameters were made, which is consistent with the oilfield production situation, which indirectly confirms the reliability of the calculation results and indicates that this method is an effective method.

       

    • loading
    • Aghli, G., Moussavi-Harami, R., Tokhmechi, B., 2020. Integration of Sonic and Resistivity Conventional Logs for Identification of Fracture Parameters in the Carbonate Reservoirs (A Case Study, Carbonate Asmari Formation, Zagros Basin, SW Iran). Journal of Petroleum Science and Engineering, 186: 106728. https://doi.org/10.1016/j.petrol.2019.106728
      Chen, Y. G., Zhao, Q. P., Yang, W. B., et al., 2011. Examination and Improvement of Fracture-Pore Model for Dual-Lateral Logging. Petroleum Geology & Oilfield Development in Daqing, 30(4): 171-174 (in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2011.04.040
      Dai, J. S., Wang, B. F., 2003. Integrated Approach of Identifying and Predicting Fracture in Reservoir. Oil & Gas Recovery Technology, 10(1): 1-2, 8 (in Chinese with English abstract).
      Deng, R., Guo, H. M., Dai, J. C., et al., 2007. Identification of Fractured Reservoir on Conventional Logs. Progress in Exploration Geophysics, (2): 107-110 (in Chinese with English abstract).
      Dong, S. B., Ke, S. Z., Zhang, H. J., et al., 2013. On Fracture Identification with Conventional Well Logging Data. Well Logging Technology, 37(4): 380-384 (in Chinese with English abstract).
      Gong, J., Zhou, J. Y., 2007. A Method for Computing Weight of Text Characteristic Item Based on Multiple Factors Weighting. Computing Technology and Automation, 26(1): 81-83 (in Chinese with English abstract).
      Guo, K., Fan, L. Y., Li, Y., et al., 2019. Comprehensive Prediction of Fracture of Tight Carbonate Reservoir in the H Block of Amu Darya Right Bank, Turkmenistan. Geophysical Prospecting for Petroleum, 58(1): 112-122 (in Chinese with English abstract).
      Huang, X. J., Li, Z. P., Zhou, G. L., et al., 2017. Fracture Porosity Modeling of Fractured Tight Sandstone Reservoir: A Case Study of the Reservoir in Member 2 of Xujiahe Formation, Pingluoba Structure, Sichuan Basin. Acta Petrolei Sinica, 38(5): 570-577 (in Chinese with English abstract).
      Jiao, L. C., Yang, S. Y., Liu, F., et al., 2016. Seventy Years beyond Neural Networks: Retrospect and Prospect. Chinese Journal of Computers, 39(8): 1697-1716 (in Chinese with English abstract).
      Li, S. J., Xiao, Y. W., Wang, H. M., et al., 1996. Mathematical Model of Dual Laterolog Response to Fracture and Quantitative Interpretation of Fracture Porosity. Chinese Journal of Geophysics, 39(6): 845-852 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1996.06.014
      Li, S. J., Wang, H. M., Xiao, C. W., et al., 1997. Quantitative Interpretation of Fracture Porosity in Carbonates. Well Logging Technology, 21(3): 205-214 (in Chinese with English abstract).
      Li, T. Y., Wang, R. H., Wang, Z. Z., et al., 2018. Prediction of Fracture Density Using Genetic Algorithm Support Vector Machine Based on Acoustic Logging Data. Geophysics, 83(2): D49-D60. https://doi.org/10.1190/geo2017-0229.1
      Li, Y., 2009. Evaluating Fractures by Logging Data and Its Modeling Technology Studies. Well Logging Technology, 33(6): 575-578 (in Chinese with English abstract).
      Liu, L. H., Peng, Z. M., Huang, D. S., et al., 2012. Pseudo-Acoustic Log Construction Based on Information Fusion from Probabilistic Neural Networks. Oil Geophysical Prospecting, 47(5): 803-807 (in Chinese with English abstract).
      Lu, Y. Z., Huang, Z. H., Guan, Z. N., 2000. A New Method for Discrimination of the Degree of Fracture Development Using Conventional Log Data. Well Logging Technology, 24(6): 428-432 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2000.06.007
      Nie, M. l., Xu, S. B., Wu, L., et al., 2015. Features of Gas Reservoirs in Subsalt Faulted Reef Complex in the Right Bank of the Amu Darya River, Turkmenistan, and Their Significance in Exploration: A Case Study of the BP Gas Reservoir. Natural Gas Industry, 35(6): 24-29 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2015.06.003
      Pan, X. P., Zhang, C. M., Hu, T., 2011. Application of Permeability Calculation by Using DLL in Fractured Carbonate Reservoirs. Journal of Oil and Gas Technology, 33(12): 92-95 (in Chinese with English abstract).
      Philippe, A. P., Roger, N. A., 1990. In Situ Measurements of Electrical Resistivity, Formation Anisotropy, and Tectonic Context. SPWLA 31th Annual Logging Symposium, Lafayette.
      Qi, B. Q., Luo, L., Zhang, S. D., et al., 2018. Log Interpretation Method about Fracture in East Area of Amu Darya Right Bank. Well Logging Technology, 42(3): 287-293 (in Chinese with English abstract).
      Sibbit, A. M., Faivre, Q., 1985. The Dual Laterolog Response in Fractured Rocks. SPWLA 26th Annual Logging Symposium, Dallas.
      Wang, X. C., Fan, Y. R., Zhang, G. J., 2008. The Calculation of Fractured Porosity Based on Dual Laterolog Data and Its Calibration. Computing Techniques for Geophysical and Geochemical Exploration, 30(5): 377-380 (in Chinese with English abstract).
      Wang, Y. J., Xia, H. Q., Fan, X. Y., 2002. Method of Evaluating Low-Permeability, Fractured Carbonate Reservoirs with Conventional Logging Techniques. Journal of Southwest Petroleum Institute, 24(4): 9-12 (in Chinese with English abstract).
      Wang, Y. Z., Tian, H., 2001. Research of Fracture Reservoir Characteristics Using FMI Logging and Dual Laterolog. Fault-Block Oil & Gas Field, 8(5): 30-32 (in Chinese with English abstract).
      Xiao, X. L., Jin, X. J., Zhang, X., et al., 2015. Fracture Identification Based on Information Fusion of Conventional Logging and Electrical Imaging Logging. Oil Geophysical Prospecting, 50(3): 542-547 (in Chinese with English abstract).
      Xu, J. L., Zhang, B. Y., Qin, Y. X., et al., 2016. Method for Calculating the Fracture Porosity of Tight-Fracture Reservoirs. Geophysics, 81(4): IM57-IM70. https://doi.org/10.1190/geo2015-0434.1
      Yong, S. H., Zhang, C. M., 2007. Logging Data Processing and Comprehensive Interpretation. China University of Petroleum Press, Dongying (in Chinese).
      Yu, Y. X., Yin, J. Y., Zheng, J. Z., et al., 2015. Division and Resources Evaluation of Hydrocarbon Plays in the Amu Darya Basin, Central Asia. Petroleum Exploration and Development, 42(6): 750-756 (in Chinese with English abstract).
      Zhang, S. D., Ren, X. G., Luo, L., et al., 2018. Logging-Based Identification and Evaluation of Karst Fractures in the Eastern Right Bank of the Amu Darya River of Turkmenistan. Natural Gas Industry, 38(6): 53-58 (in Chinese with English abstract).
      Zheng, R. C., Chen, H. R., Wang, Q., et al., 2014. The Reservoir Characteristics and Their Controlling Factors of Callovian-Oxfordian Carbonates in Amu Darya Basin. Acta Petrologica Sinica, 30(3): 779-788 (in Chinese with English abstract).
      陈义国, 赵谦平, 杨文博, 等, 2011. 双侧向测井裂缝孔隙模型考察与改进. 大庆石油地质与开发, 30(4): 171-174.
      戴俊生, 汪必峰, 2003. 综合方法识别和预测储层裂缝. 油气地质与采收率, 10(1): 1-2, 8. doi: 10.3969/j.issn.1009-9603.2003.01.001
      邓瑞, 郭海敏, 戴家才, 等, 2007. 裂缝性储层的常规测井识别方法. 勘探地球物理进展, (2): 107-110, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200702006.htm
      董双波, 柯式镇, 张红静, 等, 2013. 利用常规测井资料识别裂缝方法研究. 测井技术, 37(4): 380-384. doi: 10.3969/j.issn.1004-1338.2013.04.008
      龚静, 周经野, 2007. 一种基于多重因子加权的文本特征项权值计算方法. 计算技术与自动化, 26(1): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH200701021.htm
      郭凯, 范乐元, 李洋, 等, 2019. 阿姆河右岸H区块致密碳酸盐岩储层裂缝综合预测. 石油物探, 58(1): 112-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201901014.htm
      黄小娟, 李治平, 周光亮, 等, 2017. 裂缝性致密砂岩储层裂缝孔隙度建模——以四川盆地平落坝构造须家河组二段储层为例. 石油学报, 38(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705010.htm
      焦李成, 杨淑媛, 刘芳, 等, 2016. 神经网络七十年: 回顾与展望. 计算机学报, 39(8): 1697-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201901009.htm
      李善军, 肖永文, 汪涵明, 等, 1996. 裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释. 地球物理学报, 39(6): 845-852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX606.013.htm
      李善军, 汪涵明, 肖承文, 等, 1997. 碳酸盐岩地层中裂缝孔隙度的定量解释. 测井技术, 21(3): 205-214. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS703.008.htm
      李毓, 2009. 储层裂缝的测井识别及其地质建模研究. 测井技术, 33(6): 575-578. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200906017.htm
      刘丽红, 彭真明, 黄东山, 等, 2012. 基于概率神经网络信息融合的拟声波构建方法. 石油地球物理勘探, 47(5): 803-807. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201205021.htm
      卢颖忠, 黄智辉, 管志宁, 2000. 用常规测井资料识别裂缝发育程度的方法. 测井技术, 24(6): 428-432. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200006006.htm
      聂明龙, 徐树宝, 吴蕾, 等, 2015. 阿姆河右岸盐下断裂复杂化礁滩相气藏特征及勘探意义——以BP气藏为例. 天然气工业, 35(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201506004.htm
      潘秀萍, 张超谟, 胡挺, 2011. 双侧向测井计算碳酸盐岩裂缝性储层渗透率的应用研究. 石油天然气学报, 33(12): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201112020.htm
      齐宝权, 罗利, 张树东, 等, 2018. 阿姆河右岸东部地区裂缝测井解释方法. 测井技术, 42(3): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201803010.htm
      王晓畅, 范宜仁, 张庚骥, 2008. 基于双侧向测井资料的裂缝孔隙度计算及其标定. 物探化探计算技术, 30(5): 377-380. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT200805005.htm
      王拥军, 夏宏泉, 范翔宇, 2002. 低孔‒裂缝型碳酸盐岩储层常规测井评价研究. 西南石油学院学报, 24(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200204002.htm
      王越之, 田红, 2001. 常规测井与FMI测井资料相结合研究储层裂缝. 断块油气田, 8(5): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200105007.htm
      肖小玲, 靳秀菊, 张翔, 等, 2015. 基于常规测井与电成像测井多信息融合的裂缝识别. 石油地球物理勘探, 50(3): 542-547. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201503027.htm
      雍世和, 张超谟, 2007. 测井数据处理与综合解释. 东营: 中国石油大学出版社.
      余一欣, 殷进垠, 郑俊章, 等, 2015. 阿姆河盆地成藏组合划分与资源潜力评价. 石油勘探与开发, 42(6): 750-756. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506008.htm
      张树东, 任兴国, 罗利, 等, 2018. 阿姆河右岸东部地区岩溶裂缝的测井识别与评价. 天然气工业, 38(6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806013.htm
      郑荣才, 陈浩如, 王强, 等, 2014. 土库曼斯坦阿姆河盆地卡洛夫‒牛津阶储层特征及控制因素分析. 岩石学报, 30(3): 779-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (335) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return