Citation: | Zhao Lusong, Sun Ziyong, Ma Rui, Hu Yalu, Chang Qixin, Pan Yanxi, Pan Zhao, 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204 |
Amankwah, S. K., Ireson, A. M., Maulé, C., et al., 2021. A Model for the Soil Freezing Characteristic Curve that Represents the Dominant Role of Salt Exclusion. Water Resources Research, 57(8): e2021WR030070. https://doi.org/10.1029/2021WR030070
|
An, Z. H., Sun, Z. Y., Hu, Y. L., et al., 2018. Export of Dissolved Organic Carbon in Streams Draining PermafrostDominated Areas: A Review. Geological Science and Technology Information, 37(1): 204-211 (in Chinese with English abstract).
|
Buffam, I., Laudon, H., Temnerud, J., et al., 2007. LandscapeScale Variability of Acidity and Dissolved Organic Carbon during Spring Flood in a Boreal Stream Network. Journal of Geophysical Research: Biogeosciences, 112: G01022. https://doi.org/10.1029/2006jg000218
|
Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of GlacierSnow Meltwater to Streamflow in a Partly Glacierized AlpineGorge Catchment in Northeastern QinghaiTibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10037-10056. https://doi.org/10.1029/2018jd028683
|
Chen, R., Liu, J., Kang, E., et al., 2015. Precipitation Measurement Intercomparison in the Qilian Mountains, NorthEastern Tibetan Plateau. The Cryosphere, 9(5): 1995-2008. https://doi.org/10.5194/tc919952015
|
Cheng, G. D., Jin, H. J., 2013. Groundwater in the Permafrost Regions on the QinghaiTibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract).
|
Dornblaser, M. M., Striegl, R. G., 2015. Switching Predominance of Organic Versus Inorganic Carbon Exports from an IntermediateSize Subarctic Watershed. Geophysical Research Letters, 42(2): 386-394. https://doi.org/10.1002/2014gl062349
|
Lloret, E., Dessert, C., Pastor, L., et al., 2013. Dynamic of Particulate and Dissolved Organic Carbon in Small Volcanic Mountainous Tropical Watersheds. Chemical Geology, 351: 229-244. https://doi.org/10.1016/j.chemgeo.2013.05.023
|
Evans, S. G., Ge, S. M., 2017. Contrasting Hydrogeologic Responses to Warming in Permafrost and Seasonally Frozen Ground Hillslopes. Geophysical Research Letters, 44(4): 1803-1813. https://doi.org/10.1002/2016gl072009
|
Gao, T. G., Kang, S. C., Chen, R. S., et al., 2019. Riverine Dissolved Organic Carbon and Its Optical Properties in a Permafrost Region of the Upper Heihe River Basin in the Northern Tibetan Plateau. Science of the Total Environment, 686: 370-381. https://doi.org/10.1016/j.scitotenv.2019.05.478
|
Hirst, C., Mauclet, E., Monhonval, A., et al., 2022. Seasonal Changes in Hydrology and Permafrost Degradation Control Mineral ElementBound DOC Transport from Permafrost Soils to Streams. Global Biogeochemical Cycles, 36(2): e2021GB007105. https://doi.org/10.1029/2021GB007105
|
Ireson, A. M., van der Kamp, G., Ferguson, G., et al., 2013. Hydrogeological Processes in Seasonally Frozen Northern Latitudes: Understanding, Gaps and Challenges. Hydrogeology Journal, 21(1): 53-66. https://doi.org/10.1007/s1004001209165
|
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., et al., 2009. Hydrologic Connectivity between Landscapes and Streams: Transferring Reach and PlotScale Understanding to the Catchment Scale. Water Resources Research, 45(4): W04428. https://doi.org/10.1029/2008wr007225
|
Liu, Z. W., Chen, R. S., Song, Y. X., et al., 2012. Characteristics of Rainfall Interception for Four Typical Shrubs in Qilian Mountain. Acta Ecologica Sinica, 32(4): 333-342 (in Chinese with English abstract).
|
Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with MethaneRelated Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
|
McGuire, A. D., Anderson, L. G., Christensen, T. R., et al., 2009. Sensitivity of the Carbon Cycle in the Arctic to Climate Change. Ecological Monographs, 79(4): 523-555. https://doi.org/10.1890/082025.1
|
Mu, C. C., Zhang, T. J., Cao, B., et al., 2013. Study of the Organic Carbon Storage in the Active Layer of Permafrost over the Eboling Mountain in the Upper Reaches of the Heihe River in the Eastern Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 1-9 (in Chinese with English abstract).
|
Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the QinghaiXizang (Tibetan) Plateau. The Cryosphere, 9(2): 479-486. https://doi.org/10.5194/tc94792015
|
Mu, C. C., Abbott, B. W., Wu, X. D., et al., 2017. Thaw Depth Determines Dissolved Organic Carbon Concentration and Biodegradability on the Northern QinghaiTibetan Plateau. Geophysical Research Letters, 44(18): 9389-9399. https://doi.org/10.1002/2017gl075067
|
Pan, Z., Sun, Z. Y., Ma, R., et al., 2018. Isotopic Investigation of RainfallRunoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast QinghaiTibet Plateau. Earth Science, 43(11): 4226-4236 (in Chinese with English abstract).
|
Plaza, C., Pegoraro, E., Bracho, R., et al., 2019. Direct Observation of Permafrost Degradation and Rapid Soil Carbon Loss in Tundra. Nature Geoscience, 12(8): 627-631. https://doi.org/10.1038/s4156101903876
|
Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., et al., 2011. Sources and the Flux Pattern of Dissolved Carbon in Rivers of the Yenisey Basin Draining the Central Siberian Plateau. Environmental Research Letters, 6(4): 045212. https://doi.org/10.1088/17489326/6/4/045212
|
Song, C. L., Wang, G. X., Mao, T. X., et al., 2019. Importance of Active Layer FreezeThaw Cycles on the Riverine Dissolved Carbon Export on the QinghaiTibet Plateau Permafrost Region. PeerJ, 7: e7146. https://doi.org/10.7717/peerj.7146
|
Stein, R., MacDonald, R., 2004. The Organic Carbon Cycle in the Arctic Ocean. SpringerVerlag, Berlin.
|
Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in DischargeNormalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): L21413. https://doi.org/10.1029/2005gl024413
|
Walvoord, M. A., Voss, C. I., Wellman, T. P., 2012. Influence of Permafrost Distribution on Groundwater Flow in the Context of ClimateDriven Permafrost Thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48(7): W07524. https://doi.org/10.1029/2011wr011595
|
Wan, H. L., Bian, J. M., Zhang, H., et al., 2021. Assessment of Future Climate Change Impacts on WaterHeatSalt Migration in Unsaturated Frozen Soil Using CoupModel. Frontiers of Environmental Science & Engineering, 15(1): 10. https://doi.org/10.1007/s1178302013025
|
Wang, D., Wu, T. H., Zhao, L., et al., 2021a. A 1 km Resolution Soil Organic Carbon Dataset for Frozen Ground in the Third Pole. Earth System Science Data, 13(7): 3453-3465. https://doi.org/10.5194/essd1334532021
|
Wang, S., Sun, Z. Y., Hu, Y. L., et al., 2017. IntraAnnual Variation of Dissolved Organic Carbon Export through Stream from an Typical Alpine Catchment in QinghaiTibet Plateau: Patterns and Hydrological Controls. Safety and Environmental Engineering, 24(2): 1-7, 15 (in Chinese with English abstract).
|
Wang, X., Liu, T., Wang, L., et al., 2021b. SpatialTemporal Variations in Riverine Carbon Strongly Influenced by Local Hydrological Events in an Alpine Catchment. Biogeosciences, 18(10): 3015-3028. https://doi.org/10.5194/bg1830152021
|
Wild, B., Andersson, A., Bröder, L., et al., 2019. Rivers across the Siberian Arctic Unearth the Patterns of Carbon Release from Thawing Permafrost. Proceedings of the National Academy of Sciences of the United States of America, 116(21): 10280-10285. https://doi.org/10.1073/pnas.1811797116
|
Woo, M. K., Kane, D. L., Carey, S. K., et al., 2008. Progress in Permafrost Hydrology in the New Millennium. Permafrost and Periglacial Processes, 19(2): 237-254. https://doi.org/10.1002/ppp.613
|
You, X. N., Li, X. Y., 2021. Seasonal Variations in Dissolved Organic Carbon in the Source Region of the Yellow River on the Tibetan Plateau. Water, 13(20): 2901. https://doi.org/10.3390/w13202901
|
Zhang, D. F., Zheng, Q. H., Dong, Z. Y., 2005. Mechanism of Soil SaltMoisture Transfer under Freeze Thawing Condition. Bulletin of Soil and Water Conservation, 25(6): 14-18 (in Chinese with English abstract).
|
Zhang, F., Jin, Z. D., Li, F. C., et al., 2013. Controls on Seasonal Variations of Silicate Weathering and CO2 Consumption in Two River Catchments on the NE Tibetan Plateau. Journal of Asian Earth Sciences, 62: 547-560. https://doi.org/10.1016/j.jseaes.2012.11.004
|
Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace RiverGroundwater Interactions in Alpine Regions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
|
Zhang, T., Barry, R. G., Knowles, K., et al., 2003. Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere. In: Guglielmin, M., Balks, M., Paetzold, R., eds., Proceedings of the 8th International Conference on Permafrost. A.A. Balkema Publishers, Amsterdam.
|
Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc1125272017
|
安志宏, 孙自永, 胡雅璐, 等, 2018. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 37(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htm
|
程国栋, 金会军, 2013. 青藏高原多年冻土区地下水及其变化. 水文地质工程地质, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301007.htm
|
刘章文, 陈仁升, 宋耀选, 等, 2012. 祁连山典型灌丛降雨截留特征. 生态学报, 32(4): 333-342. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201204036.htm
|
毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
|
牟翠翠, 张廷军, 曹斌, 等, 2013. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htm
|
潘钊, 孙自永, 马瑞, 等, 2018. 黑河上游高寒山区降雨‒径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
|
王烁, 孙自永, 胡雅璐, 等, 2017. 高寒山区典型小流域河流溶解性有机碳输出的年内变化及其成因. 安全与环境工程, 24(2): 1-7, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201702001.htm
|
张殿发, 郑琦宏, 董志颖, 2005. 冻融条件下土壤中水盐运移机理探讨. 水土保持通报, 25(6): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200506004.htm
|
张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202304010.htm
|
1. | 杨泽森,常启昕,贺笙哲,廖习锐. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学. 2025(02): 687-698 . ![]() | |
2. | 丁佳丽,王根绪,吴碧琼,李宇灏,王莹,王浩宇,宋春林. 变化环境下青藏高原河流碳循环特征及其对区域碳循环的影响. 冰川冻土. 2025(02): 504-521 . ![]() | |
3. | 熊净,孙自永,胡雅璐,马瑞. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学. 2024(11): 4169-4183 . ![]() | |
4. | Zeyong Gao,Fujun Niu,Dongliang Luo,Yibo Wang,Jing Luo,Guoan Yin,Yunhu Shang. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science. 2024(06): 2175-2179 . ![]() |