• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zhao Lusong, Sun Ziyong, Ma Rui, Hu Yalu, Chang Qixin, Pan Yanxi, Pan Zhao, 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    Citation: Zhao Lusong, Sun Ziyong, Ma Rui, Hu Yalu, Chang Qixin, Pan Yanxi, Pan Zhao, 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204

    Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau

    doi: 10.3799/dqkx.2022.204
    • Received Date: 2022-04-06
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Soil carbon storage in alpine regions is an important component of the global frost carbon pool. Lateral carbon export from terrestrial ecosystems to rivers in dissolved phase is an important pathway for soil carbon export from alpine catchments. Previous studies on dissolved carbon export from alpine catchments have focused on permafrost areas, and less attention has been paid to seasonal frost areas. To explore the patterns, influencing factors and mechanisms of dissolved carbon export through rivers in seasonal frost areas, we selected the Hongnigou catchment at the northern flank of the Qilian Mountains on the Qinghai-Xizang Plateau as the study area, and we made continuous observations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations and fluxes in river water. Combining the observed data of stable isotope abundance in river water and meteorology, hydrology, and ground temperature in the catchment, it is found that: (1) during the early thawing period in late spring, the riverine DOC and DIC at the outlet of the catchment were high in concentration but low in flux; (2) during the late thawing period in summer, the riverine DOC and DIC were low in concentration but high in flux; and (3) both DOC and DIC concentrations in the river showed an overall decreasing trend in summer, but slightly increased during low flow periods compared to high flow periods. The study shows that for the alpine catchments underlaid by seasonal frost, represented by the Hongnigou catchment, the dissolved carbon export is mainly influenced by frost characteristics and dynamics during the early thawing period. However, during the late thawing period in summer, it becomes dominated by hydrological input characteristics. During this period, the thin aquifers consisting mainly of fine-grained residual deposits and the widespread freeze-thaw disturbed landforms also have significant impacts, resulting in a higher riverine DOC concentration than that reported in other areas of the Qinghai-Xizang Plateau.

       

    • 致谢: 感谢匿名审稿专家提出的有益建议,感谢中国科学院黑河上游生态‒水文试验研究站工作人员在野外工作中的帮助!
    • Amankwah, S. K., Ireson, A. M., Maulé, C., et al., 2021. A Model for the Soil Freezing Characteristic Curve that Represents the Dominant Role of Salt Exclusion. Water Resources Research, 57(8): e2021WR030070. https://doi.org/10.1029/2021WR030070
      An, Z. H., Sun, Z. Y., Hu, Y. L., et al., 2018. Export of Dissolved Organic Carbon in Streams Draining Permafrost­Dominated Areas: A Review. Geological Science and Technology Information, 37(1): 204-211 (in Chinese with English abstract).
      Buffam, I., Laudon, H., Temnerud, J., et al., 2007. Landscape­Scale Variability of Acidity and Dissolved Organic Carbon during Spring Flood in a Boreal Stream Network. Journal of Geophysical Research: Biogeosciences, 112: G01022. https://doi.org/10.1029/2006jg000218
      Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier­Snow Meltwater to Streamflow in a Partly Glacierized Alpine­Gorge Catchment in Northeastern Qinghai­Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10037-10056. https://doi.org/10.1029/2018jd028683
      Chen, R., Liu, J., Kang, E., et al., 2015. Precipitation Measurement Intercomparison in the Qilian Mountains, North­Eastern Tibetan Plateau. The Cryosphere, 9(5): 1995-2008. https://doi.org/10.5194/tc­9­1995­2015
      Cheng, G. D., Jin, H. J., 2013. Groundwater in the Permafrost Regions on the Qinghai­Tibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract).
      Dornblaser, M. M., Striegl, R. G., 2015. Switching Predominance of Organic Versus Inorganic Carbon Exports from an Intermediate­Size Subarctic Watershed. Geophysical Research Letters, 42(2): 386-394. https://doi.org/10.1002/2014gl062349
      Lloret, E., Dessert, C., Pastor, L., et al., 2013. Dynamic of Particulate and Dissolved Organic Carbon in Small Volcanic Mountainous Tropical Watersheds. Chemical Geology, 351: 229-244. https://doi.org/10.1016/j.chemgeo.2013.05.023
      Evans, S. G., Ge, S. M., 2017. Contrasting Hydrogeologic Responses to Warming in Permafrost and Seasonally Frozen Ground Hillslopes. Geophysical Research Letters, 44(4): 1803-1813. https://doi.org/10.1002/2016gl072009
      Gao, T. G., Kang, S. C., Chen, R. S., et al., 2019. Riverine Dissolved Organic Carbon and Its Optical Properties in a Permafrost Region of the Upper Heihe River Basin in the Northern Tibetan Plateau. Science of the Total Environment, 686: 370-381. https://doi.org/10.1016/j.scitotenv.2019.05.478
      Hirst, C., Mauclet, E., Monhonval, A., et al., 2022. Seasonal Changes in Hydrology and Permafrost Degradation Control Mineral Element­Bound DOC Transport from Permafrost Soils to Streams. Global Biogeochemical Cycles, 36(2): e2021GB007105. https://doi.org/10.1029/2021GB007105
      Ireson, A. M., van der Kamp, G., Ferguson, G., et al., 2013. Hydrogeological Processes in Seasonally Frozen Northern Latitudes: Understanding, Gaps and Challenges. Hydrogeology Journal, 21(1): 53-66. https://doi.org/10.1007/s10040­012­0916­5
      Jencso, K. G., McGlynn, B. L., Gooseff, M. N., et al., 2009. Hydrologic Connectivity between Landscapes and Streams: Transferring Reach­ and Plot­Scale Understanding to the Catchment Scale. Water Resources Research, 45(4): W04428. https://doi.org/10.1029/2008wr007225
      Liu, Z. W., Chen, R. S., Song, Y. X., et al., 2012. Characteristics of Rainfall Interception for Four Typical Shrubs in Qilian Mountain. Acta Ecologica Sinica, 32(4): 333-342 (in Chinese with English abstract).
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane­Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      McGuire, A. D., Anderson, L. G., Christensen, T. R., et al., 2009. Sensitivity of the Carbon Cycle in the Arctic to Climate Change. Ecological Monographs, 79(4): 523-555. https://doi.org/10.1890/08­2025.1
      Mu, C. C., Zhang, T. J., Cao, B., et al., 2013. Study of the Organic Carbon Storage in the Active Layer of Permafrost over the Eboling Mountain in the Upper Reaches of the Heihe River in the Eastern Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 1-9 (in Chinese with English abstract).
      Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai­Xizang (Tibetan) Plateau. The Cryosphere, 9(2): 479-486. https://doi.org/10.5194/tc­9­479­2015
      Mu, C. C., Abbott, B. W., Wu, X. D., et al., 2017. Thaw Depth Determines Dissolved Organic Carbon Concentration and Biodegradability on the Northern Qinghai­Tibetan Plateau. Geophysical Research Letters, 44(18): 9389-9399. https://doi.org/10.1002/2017gl075067
      Pan, Z., Sun, Z. Y., Ma, R., et al., 2018. Isotopic Investigation of Rainfall­Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai­Tibet Plateau. Earth Science, 43(11): 4226-4236 (in Chinese with English abstract).
      Plaza, C., Pegoraro, E., Bracho, R., et al., 2019. Direct Observation of Permafrost Degradation and Rapid Soil Carbon Loss in Tundra. Nature Geoscience, 12(8): 627-631. https://doi.org/10.1038/s41561­019­0387­6
      Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., et al., 2011. Sources and the Flux Pattern of Dissolved Carbon in Rivers of the Yenisey Basin Draining the Central Siberian Plateau. Environmental Research Letters, 6(4): 045212. https://doi.org/10.1088/1748­9326/6/4/045212
      Song, C. L., Wang, G. X., Mao, T. X., et al., 2019. Importance of Active Layer Freeze­Thaw Cycles on the Riverine Dissolved Carbon Export on the Qinghai­Tibet Plateau Permafrost Region. PeerJ, 7: e7146. https://doi.org/10.7717/peerj.7146
      Stein, R., MacDonald, R., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer­Verlag, Berlin.
      Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge­Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): L21413. https://doi.org/10.1029/2005gl024413
      Walvoord, M. A., Voss, C. I., Wellman, T. P., 2012. Influence of Permafrost Distribution on Groundwater Flow in the Context of Climate­Driven Permafrost Thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48(7): W07524. https://doi.org/10.1029/2011wr011595
      Wan, H. L., Bian, J. M., Zhang, H., et al., 2021. Assessment of Future Climate Change Impacts on Water­Heat­Salt Migration in Unsaturated Frozen Soil Using CoupModel. Frontiers of Environmental Science & Engineering, 15(1): 10. https://doi.org/10.1007/s11783­020­1302­5
      Wang, D., Wu, T. H., Zhao, L., et al., 2021a. A 1 km Resolution Soil Organic Carbon Dataset for Frozen Ground in the Third Pole. Earth System Science Data, 13(7): 3453-3465. https://doi.org/10.5194/essd­13­3453­2021
      Wang, S., Sun, Z. Y., Hu, Y. L., et al., 2017. Intra­Annual Variation of Dissolved Organic Carbon Export through Stream from an Typical Alpine Catchment in Qinghai­Tibet Plateau: Patterns and Hydrological Controls. Safety and Environmental Engineering, 24(2): 1-7, 15 (in Chinese with English abstract).
      Wang, X., Liu, T., Wang, L., et al., 2021b. Spatial­Temporal Variations in Riverine Carbon Strongly Influenced by Local Hydrological Events in an Alpine Catchment. Biogeosciences, 18(10): 3015-3028. https://doi.org/10.5194/bg­18­3015­2021
      Wild, B., Andersson, A., Bröder, L., et al., 2019. Rivers across the Siberian Arctic Unearth the Patterns of Carbon Release from Thawing Permafrost. Proceedings of the National Academy of Sciences of the United States of America, 116(21): 10280-10285. https://doi.org/10.1073/pnas.1811797116
      Woo, M. K., Kane, D. L., Carey, S. K., et al., 2008. Progress in Permafrost Hydrology in the New Millennium. Permafrost and Periglacial Processes, 19(2): 237-254. https://doi.org/10.1002/ppp.613
      You, X. N., Li, X. Y., 2021. Seasonal Variations in Dissolved Organic Carbon in the Source Region of the Yellow River on the Tibetan Plateau. Water, 13(20): 2901. https://doi.org/10.3390/w13202901
      Zhang, D. F., Zheng, Q. H., Dong, Z. Y., 2005. Mechanism of Soil Salt­Moisture Transfer under Freeze­ Thawing Condition. Bulletin of Soil and Water Conservation, 25(6): 14-18 (in Chinese with English abstract).
      Zhang, F., Jin, Z. D., Li, F. C., et al., 2013. Controls on Seasonal Variations of Silicate Weathering and CO2 Consumption in Two River Catchments on the NE Tibetan Plateau. Journal of Asian Earth Sciences, 62: 547-560. https://doi.org/10.1016/j.jseaes.2012.11.004
      Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River­Groundwater Interactions in Alpine Regions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
      Zhang, T., Barry, R. G., Knowles, K., et al., 2003. Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere. In: Guglielmin, M., Balks, M., Paetzold, R., eds., Proceedings of the 8th International Conference on Permafrost. A.A. Balkema Publishers, Amsterdam.
      Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc­11­2527­2017
      安志宏, 孙自永, 胡雅璐, 等, 2018. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 37(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htm
      程国栋, 金会军, 2013. 青藏高原多年冻土区地下水及其变化. 水文地质工程地质, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301007.htm
      刘章文, 陈仁升, 宋耀选, 等, 2012. 祁连山典型灌丛降雨截留特征. 生态学报, 32(4): 333-342. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201204036.htm
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      牟翠翠, 张廷军, 曹斌, 等, 2013. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htm
      潘钊, 孙自永, 马瑞, 等, 2018. 黑河上游高寒山区降雨‒径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
      王烁, 孙自永, 胡雅璐, 等, 2017. 高寒山区典型小流域河流溶解性有机碳输出的年内变化及其成因. 安全与环境工程, 24(2): 1-7, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201702001.htm
      张殿发, 郑琦宏, 董志颖, 2005. 冻融条件下土壤中水盐运移机理探讨. 水土保持通报, 25(6): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200506004.htm
      张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202304010.htm
    • Relative Articles

    • Cited by

      Periodical cited type(4)

      1. 杨泽森,常启昕,贺笙哲,廖习锐. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学. 2025(02): 687-698 . 本站查看
      2. 丁佳丽,王根绪,吴碧琼,李宇灏,王莹,王浩宇,宋春林. 变化环境下青藏高原河流碳循环特征及其对区域碳循环的影响. 冰川冻土. 2025(02): 504-521 .
      3. 熊净,孙自永,胡雅璐,马瑞. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学. 2024(11): 4169-4183 . 本站查看
      4. Zeyong Gao,Fujun Niu,Dongliang Luo,Yibo Wang,Jing Luo,Guoan Yin,Yunhu Shang. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science. 2024(06): 2175-2179 .

      Other cited types(1)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050204060
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 61.8 %META: 61.8 %PDF: 7.4 %PDF: 7.4 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.5 %其他: 14.5 %其他: 0.8 %其他: 0.8 %Rochester: 0.2 %Rochester: 0.2 %上海: 2.4 %上海: 2.4 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.7 %乌鲁木齐: 0.7 %保定: 0.2 %保定: 0.2 %兰州: 0.8 %兰州: 0.8 %北京: 5.8 %北京: 5.8 %十堰: 0.1 %十堰: 0.1 %南京: 1.4 %南京: 1.4 %南昌: 1.4 %南昌: 1.4 %厦门: 0.1 %厦门: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %喀什: 0.3 %喀什: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.8 %大连: 0.8 %天津: 2.1 %天津: 2.1 %安康: 0.5 %安康: 0.5 %宜昌: 0.2 %宜昌: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 1.1 %宣城: 1.1 %常州: 0.4 %常州: 0.4 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %张家口: 1.6 %张家口: 1.6 %徐州: 0.3 %徐州: 0.3 %恩施: 0.3 %恩施: 0.3 %成都: 1.9 %成都: 1.9 %扬州: 1.0 %扬州: 1.0 %攀枝花: 1.0 %攀枝花: 1.0 %昆明: 1.4 %昆明: 1.4 %杭州: 0.6 %杭州: 0.6 %株洲: 0.3 %株洲: 0.3 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.6 %沈阳: 0.6 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %浦那: 0.2 %浦那: 0.2 %海东: 0.2 %海东: 0.2 %海口: 0.6 %海口: 0.6 %淄博: 0.1 %淄博: 0.1 %深圳: 4.4 %深圳: 4.4 %温州: 1.0 %温州: 1.0 %湖州: 0.5 %湖州: 0.5 %漯河: 3.1 %漯河: 3.1 %潮州: 0.3 %潮州: 0.3 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芝加哥: 1.1 %芝加哥: 1.1 %莫斯科: 1.1 %莫斯科: 1.1 %萍乡: 0.1 %萍乡: 0.1 %蚌埠: 0.3 %蚌埠: 0.3 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.4 %衢州: 0.4 %襄阳: 0.1 %襄阳: 0.1 %西宁: 8.9 %西宁: 8.9 %西安: 0.7 %西安: 0.7 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %费利蒙: 0.2 %费利蒙: 0.2 %赣州: 0.9 %赣州: 0.9 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.8 %郑州: 0.8 %重庆: 0.3 %重庆: 0.3 %铜仁: 0.4 %铜仁: 0.4 %长沙: 2.8 %长沙: 2.8 %青岛: 0.5 %青岛: 0.5 %香港: 0.4 %香港: 0.4 %黄冈: 0.2 %黄冈: 0.2 %黄山: 0.3 %黄山: 0.3 %其他其他Rochester上海临汾乌鲁木齐保定兰州北京十堰南京南昌厦门台州合肥呼和浩特哈尔滨哥伦布喀什嘉兴大连天津安康宜昌宜春宣城常州平顶山广州张家口徐州恩施成都扬州攀枝花昆明杭州株洲武汉沈阳洛阳济南浦那海东海口淄博深圳温州湖州漯河潮州石嘴山石家庄福州芒廷维尤芝加哥莫斯科萍乡蚌埠衡阳衢州襄阳西宁西安诺伊达诺沃克费利蒙赣州运城遵义邯郸郑州重庆铜仁长沙青岛香港黄冈黄山

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (624) PDF downloads(77) Cited by(5)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return