• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Li Zhigang, Ye Honglin, Dai Yunyun, Xu Guangli, Sheng Yifan, Ma Yun, 2024. Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles. Earth Science, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211
    Citation: Li Zhigang, Ye Honglin, Dai Yunyun, Xu Guangli, Sheng Yifan, Ma Yun, 2024. Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles. Earth Science, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211

    Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles

    doi: 10.3799/dqkx.2022.211
    • Received Date: 2022-03-04
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • The deterioration of shear properties of schist under dry-wet cycles has an important effect on the long-term stability of schist slope. Taking the mica-quartz schist widely distributed in Northwest Hubei as the research object, a series of laboratory tests were carried out to reveal the law and mechanism of its shear deterioration. The results of water absorption tests and direct shear tests show that the water absorption of mica-quartz schist increases, while the shear strength and residual shear strength decrease gradually with the increase of the number of dry-wet cycles, and the shear properties show obvious deterioration effect. Based on the changes of mica-quartz schist microstructure obtained by scanning electron microscopy, the deterioration mechanism of mica-quartz schist is revealed. Under the action of dry-wet cycles, the schist plane gradually expands and cracks, the strength of internal mineral particles is softened, the cementation between particles is weakened, and the rock skeleton becomes loose. What's more, the cohesion is mainly affected by the degree of cementation between mineral particles, so the deterioration rate is fast. While the internal friction angle is mainly affected by the degree of embeddedness and the strength of mineral particles, so the deterioration rate is relatively slow.

       

    • loading
    • An, R., Kong, L. W., Li, C. S., et al., 2020. Strength Attenuation and Microstructure Damage of Granite Residual Soils under Hot and Rainy Weather. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1902-1911 (in Chinese with English abstract).
      Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three⁃Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361 (in Chinese with English abstract).
      Chen, X. X., Gong, Y. P., 2019. Features of Shear Strength Parameters Reflecting Damage to Rock Caused by Water Invasion⁃Loss Cycles. Geotechnical and Geological Engineering, 37(3): 1919-1929. https://doi.org/10.1007/s10706⁃018⁃0733⁃2
      Deng, H. F., Zhou, M. L., Li, J. L., et al., 2016. Mechanical Properties Deteriorating Change Rule Research of Red⁃Layer Soft Rock under Water⁃Rock Interaction. Chinese Journal of Rock Mechanics and Engineering, 35(S2): 3481-3491 (in Chinese with English abstract).
      Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract).
      Li, C. D., Meng, J., Xiang, L. Y., et al., 2023. Multi⁃Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).
      Li, X. S., Peng, K., Peng, J., et al., 2021. Effect of Cyclic Wetting⁃Drying Treatment on Strength and Failure Behavior of Two Quartz⁃Rich Sandstones under Direct Shear. Rock Mechanics and Rock Engineering, 54(11): 5953-5960. https://doi.org/10.1007/s00603⁃021⁃02583⁃z
      Liu, T., 2015. Experimental Study on Mechanical Properties of Mica Schist under the Action of Wetting⁃Drying Cycle. Subgrade Engineering, (4): 67-71 (in Chinese with English abstract).
      Liu, X., Tang, Z. C., Li, L., et al., 2020. Experimental Study on Shear Properties of Red Sandstone Joints after Cyclic Wetting⁃Drying Treatment. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3316-3325 (in Chinese with English abstract).
      Liu, X. R., Jin, M. H., Li, D. L., et al., 2018. Strength Deterioration of a Shaly Sandstone under Dry⁃Wet Cycles: A Case Study from the Three Gorges Reservoir in China. Bulletin of Engineering Geology and the Environment, 77(4): 1607-1621. https://doi.org/10.1007/s10064⁃017⁃1107⁃3
      Liu, X. R., Wang, Z. J., Fu, Y., et al., 2016. Research on Nondestructive Testing Parameters' Scale Effect of Sandstone of Different Moisture Contents. Rock and Soil Mechanics, 37(S1): 192-200 (in Chinese with English abstract).
      Liu, X. R., Wang, Z. J., Fu, Y., et al., 2017. Strength and Failure Criterion of Argillaceous Sandstone under Dry⁃Wet Cycles. Rock and Soil Mechanics, 38(12): 3395-3401 (in Chinese with English abstract).
      Liu, X. X., Li, Y., Wang, W. W., et al., 2022. Research on Mechanical Properties and Strength Criterion of Carbonaceous Shale with Pre⁃Existing Fissures under Drying⁃Wetting Cycles. Chinese Journal of Rock Mechanics and Engineering, 41(2): 228-239 (in Chinese with English abstract).
      Nouailletas, O., Perlot, C., Rivard, P., et al., 2017. Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint. Rock Mechanics and Rock Engineering, 50(6): 1439-1451. https://doi.org/10.1007/s00603⁃017⁃1182⁃6
      Özbek, A., 2014. Investigation of the Effects of Wetting⁃Drying and Freezing⁃Thawing Cycles on Some Physical and Mechanical Properties of Selected Ignimbrites. Bulletin of Engineering Geology and the Environment, 73(2): 595-609. https://doi.org/10.1007/s10064⁃013⁃0519⁃y
      Qin, Z., Chen, X. X., Fu, H. L., 2018. Damage Features of Altered Rock Subjected to Drying⁃Wetting Cycles. Advances in Civil Engineering, 2018: 1-10. https://doi.org/10.1155/2018/5170832
      Wang, C., Pei, W. S., Zhang, M. Y., et al., 2021. Multi⁃Scale Experimental Investigations on the Deterioration Mechanism of Sandstone under Wetting⁃Drying Cycles. Rock Mechanics and Rock Engineering, 54(1): 429-441. https://doi.org/10.1007/s00603⁃020⁃02257⁃2
      Xie, K. N., Jiang, D. Y., Sun, Z. G., et al., 2018. NMR, MRI and AE Statistical Study of Damage Due to a Low Number of Wetting⁃Drying Cycles in Sandstone from the Three Gorges Reservoir Area. Rock Mechanics and Rock Engineering, 51(11): 3625-3634. https://doi.org/10.1007/s00603⁃018⁃1562⁃6
      Yao, W. M., Li, C. D., Zhan, H. B., et al., 2020. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting⁃Drying of Yangtze River Water. Rock Mechanics and Rock Engineering, 53(5): 2215-2231. https://doi.org/10.1007/s00603⁃019⁃02037⁃7
      Yin, X. M., Yan, E. C., Wang, L. N., et al., 2020. Anisotropy of Quartz Mica Schist Based on Quantitative Extraction of Fabric Information. Bulletin of Engineering Geology and the Environment, 79(5): 2439-2456. https://doi.org/10.1007/s10064⁃019⁃01699⁃5
      Yuan, W., Liu, X. R., Fu, Y., 2019. Chemical Thermodynamics and Chemical Kinetics Analysis of Sandstone Dissolution under the Action of Dry⁃Wet Cycles in Acid and Alkaline Environments. Bulletin of Engineering Geology and the Environment, 78(2): 793-801. https://doi.org/10.1007/s10064⁃017⁃1162⁃9
      Zhang, Z. H., Huang, X., Cui, Q., 2017. Experimental Study on Deterioration of the Tensile Strength of Red Sandstone during the Operation of Reservoir. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2731-2740 (in Chinese with English abstract).
      Zhao, Z. H., Yang, J., Zhang, D. F., et al., 2017. Effects of Wetting and Cyclic Wetting⁃Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content. Rock Mechanics and Rock Engineering, 50(2): 485-491. https://doi.org/10.1007/s00603⁃016⁃1087⁃9
      Zhou, D. H., Zhai, Q. L., Liu, T., et al., 2013. Study on Deformation Mode and Failure Mechanism of Schist Slope along Highway in Northwest Hubei. Subgrade Engineering, (4): 29-33 (in Chinese with English abstract).
      安然, 孔令伟, 黎澄生, 等, 2020. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律. 岩石力学与工程学报, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm
      陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282
      邓华锋, 周美玲, 李建林, 等, 2016. 水‒岩作用下红层软岩力学特性劣化规律研究. 岩石力学与工程学报, 35(S2): 3481-3491. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2005.htm
      亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      李长冬, 孟杰, 项林语, 等, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
      刘廷, 2015. 干湿循环作用下云母片岩力学特性试验研究. 路基工程, (4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201504016.htm
      刘星, 唐志成, 李璐, 等, 2020. 循环干湿处理后红砂岩节理的剪切性质试验研究. 岩石力学与工程学报, 39(S2): 3316-3325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2011.htm
      刘新荣, 王子娟, 傅晏, 等, 2016. 不同含水率砂岩无损检测参数的尺度效应研究. 岩土力学, 37(S1): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1025.htm
      刘新荣, 王子娟, 傅晏, 等, 2017. 考虑干湿循环作用泥质砂岩的强度与破坏准则研究. 岩土力学, 38(12): 3395-3401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm
      刘新喜, 李玉, 王玮玮, 等, 2022. 干湿循环作用下预制裂隙炭质页岩力学特性及强度准则研究. 岩石力学与工程学报, 41(2): 228-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm
      张振华, 黄翔, 崔强, 2017. 水库运行期岸坡消落带红砂岩抗拉强度劣化机制. 岩石力学与工程学报, 36(11): 2731-2740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711012.htm
      周大华, 翟全礼, 刘廷, 等, 2013. 鄂西北地区公路片岩边坡变形破坏模式及失稳机制研究. 路基工程, (4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201304008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(1)

      Article views (576) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return