Citation: | Cai Guofu, Peng Guangrong, Wu Jing, Bai Haijun, Li Yingwei, Xu Xinming, Gong Wen, Li Kongsen, 2022. Sedimentary Filling Response to Detachment Structural Deformation in Shallow-Water Continental Shelf of Pearl River Mouth Basin: A Case Study of Enping Sag. Earth Science, 47(7): 2391-2409. doi: 10.3799/dqkx.2022.215 |
Cai, G.F., Zhang, X.T., Peng, G.R., et al., 2021. Neogene Volcanism and Tectonics along the Yangjing-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52 (in Chinese with English abstract).
|
Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
|
Deng, P., Mei, L.F., Du, J.Y., et al., 2020. Characteristics and Genetic Development of a Low-Angle Boundary Normal Fault in Xijiang Main Sag, Pearl River Mouth Basin, China. Oil & Gas Geology, 41(3): 606-616 (in Chinese with English abstract).
|
Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11(1): 4583. https://doi.org/10.1038/s41467-020-18448-y
|
Friedmann, S. J., Burbank, D. W., 1995. Rift Basins and Supradetachment Basins: Intracontinental Extensional End-Members. Basin Research, 7(2): 109-127. https://doi.org/10.1111/j.1365-2117.1995.tb00099.x
|
Gong, L., Zhu, H.T., Shu, Y., et al., 2014. Distribution of Middle-Deep Lacustrine Source Rocks within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin. Earth Science, 39(5): 546-556 (in Chinese with English abstract).
|
He, Y., Mei, L.F., Shi, H.S., et al., 2018. Structural Characteristics and Genetic Model of the Low-Angle Fault Depression: A Case in Enping Depression of Pearl River Mouth Basin. Marine Origin Petroleum Geology, 23(3): 73-81 (in Chinese with English abstract).
|
Li, H.B., Zheng, J.Y., Pang, X., et al., 2020. Structural Patterns and Controlling Factors of Differential Detachment in the Northern Continental Margin of the South China Sea: Taking Baiyun-Liwan Deep Water Area in the Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 32(4): 24-35 (in Chinese with English abstract).
|
Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, U.S.A. . Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9
|
Liu, B.J., Pang, X., Wang, J.H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract).
|
Liu, B.J., Pang, X., Xie, S.W., et al., 2022. The Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373 (in Chinese with English abstract).
|
Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2015. Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 36(3): 286-299 (in Chinese with English abstract).
|
Liu, Q.H., Zhu, H.T., Yang, X.H., et al., 2013. Quantitative Recognition of Seismic Sequence Stratigraphic Units in Wenchang Formation, Paleogene, Enping Sag, Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 44(3): 1076-1082 (in Chinese with English abstract).
|
Masini, E., Manatschal, G., Mohn, G., et al., 2011. The Tectono-Sedimentary Evolution of a Supra-Detachment Rift Basin at a Deep-Water Magma-Poor Rifted Margin: The Example of the Samedan Basin Preserved in the Err Nappe in SE Switzerland. Basin Research, 23(6): 652-677. https://doi.org/10.1111/j.1365-2117.2011.00509.x
|
Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract).
|
Pang, X., Ren, J.Y., Zheng, J.Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract).
|
Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract).
|
Qi, J.F., Wu, J.F., Ma, B.S., et al., 2019. The Structural Model and Dynamics Concerning Middle Section, Pearl River Mouth Basin in North Margin of South China Sea. Earth Science Frontiers, 26(2): 203-221 (in Chinese with English abstract).
|
Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
|
Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
|
Reston, T. J., Leythaeuser, T., Booth-Rea, G., et al., 2007. Movement along a Low-Angle Normal Fault: The S Reflector West of Spain. Geochemistry, Geophysics, Geosystems, 8(6): Q06002. https://doi.org/10.1029/2006GC001437
|
Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
|
Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
|
Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
|
Taylor, M. H., Kapp, P. A., Horton, B. K., 2012. Basin Response to Active Extension and Strike-Slip Deformation in the Hinterland of the Tibetan Plateau. In: Tectonics of Sedimentary Basins. John Wiley & Sons, Chichester, 445-460. https://doi.org/10.1002/9781444347166.ch22
|
Wang, J.H., Liu, L.H., Chen, S.H., et al., 2011. Tectonic-Sedimentary Responses to the Second Episode of the Zhu-Qiong Movement in the Enping Depression, Pearl River Mouth Basin and Its Regional Tectonic Significance. Acta Petrolei Sinica, 32(4): 588-595 (in Chinese with English abstract).
|
Wu, J., Zhu, D.W., Zhao, P., et al., 2021. Controls of Faulted Composite Accumulation Ridge on the Long Distance Migration and Accumulation of Neogene Hydrocarbon: A Case Study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 131-139 (in Chinese with English abstract).
|
Xiong, W.L., Zhu, J.Z., Yang, X.Y., et al., 2020. Study on the Genetic Sources and Accumulation Processes of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65 (in Chinese with English abstract).
|
Ye, Q., Mei, L. F., Jiang, D. P., et al., 2022.3-D Structure and Development of a Metamorphic Core Complex in the Northern South China Sea Rifted Margin. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB022595. https://doi.org/10.1029/2021JB022595
|
Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics, 731-732: 1-16. https://doi.org/10.1016/j.tecto.2018.03.003
|
Zeng, Z.W., Yang, X.H., Shu, Y., et al., 2015. Structure Palaeogeomorphology Characteristics and Sand Bodies Distribution Regularities of Paleogene Wenchang Formation in Enping Sag: Under the Conditions of Lack of Drilling Data to Predict and Evaluate the Reservoir Sand Bodies. Geoscience, 29(4): 804-815 (in Chinese with English abstract).
|
Zhang, X.T., Liu, P., Wang, W.Y., et al., 2021. Controlling Effect of Tectonic Transformation in Paleogene Wenchang Formation on Oil and Gas Accumulation in Zhu Ⅰ Depression. Earth Science, 46(5): 1797-1813 (in Chinese with English abstract).
|
Zhou, Z. C., Mei, L. F., Shi, H. S., et al., 2019. Evolution of Low-Angle Normal Faults in the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical Rotation. Journal of Earth Science, 30(6): 1326-1340. https://doi.org/10.1007/s12583-019-0899-4
|
Zhu, H.T., Li, S., Liu, H.R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: an Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-372 (in Chinese with English abstract).
|
蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101004.htm
|
邓棚, 梅廉夫, 杜家元, 等, 2020. 珠江口盆地西江主洼低角度边界正断层特征及成因演化. 石油与天然气地质, 41(3): 606-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003017.htm
|
龚丽, 朱红涛, 舒誉, 等, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546-556. doi: 10.3799/dqkx.2014.052
|
何勇, 梅廉夫, 施和生, 等, 2018. 低角度断陷盆地成因模式及结构特征: 以珠江口盆地恩平低角度断陷为例. 海相油气地质, 23(3): 73-81. doi: 10.3969/j.issn.1672-9854.2018.03.008
|
李洪博, 郑金云, 庞雄, 等, 2020. 南海北部陆缘差异拆离作用结构样式与控制因素: 以珠江口盆地白云-荔湾深水区为例. 中国海上油气, 32(4): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004003.htm
|
柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138. doi: 10.7623/syxb2019S1011
|
柳保军, 庞雄, 谢世文, 等, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035
|
刘强虎, 朱红涛, 舒誉, 等, 2015. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制. 石油学报, 36(3): 286-299.
|
刘强虎, 朱红涛, 杨香华, 等, 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3): 1076-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303035.htm
|
米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
|
庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
|
庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
|
漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学. 地学前缘, 26(2): 203-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902019.htm
|
任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114.
|
任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
|
施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
|
孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
|
王家豪, 刘丽华, 陈胜红, 等, 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588-595. doi: 10.3969/j.issn.1001-8719.2011.04.015
|
吴静, 朱定伟, 赵鹏, 等, 2021. 断裂复合汇聚脊对新近系油气远距离富集的控制作用: 以珠江口盆地阳江东凹与恩平凹陷为例. 大地构造与成矿学, 45(1): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101011.htm
|
熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001006.htm
|
曾智伟, 杨香华, 舒誉, 等, 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律——少井条件下储集砂体预测与评价. 现代地质, 29(4): 804-815. doi: 10.3969/j.issn.1000-8527.2015.04.009
|
张向涛, 刘培, 王文勇, 等, 2021. 珠一坳陷古近系文昌期构造转变对油气成藏的控制作用. 地球科学, 46(5): 1797-1813. doi: 10.3799/dqkx.2020.106
|
朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-372. doi: 10.3799/dqkx.2016.028
|