• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Zhang Zhu, Yan Heng, Wang Xinguang, Gao Ling, Li Jinchi, 2024. Comprehensive Evaluation of Fault Sealing Based on Improved Fuzzy Comprehensive Evaluation Method. Earth Science, 49(3): 1144-1153. doi: 10.3799/dqkx.2022.223
    Citation: Zhang Zhu, Yan Heng, Wang Xinguang, Gao Ling, Li Jinchi, 2024. Comprehensive Evaluation of Fault Sealing Based on Improved Fuzzy Comprehensive Evaluation Method. Earth Science, 49(3): 1144-1153. doi: 10.3799/dqkx.2022.223

    Comprehensive Evaluation of Fault Sealing Based on Improved Fuzzy Comprehensive Evaluation Method

    doi: 10.3799/dqkx.2022.223
    • Received Date: 2022-01-12
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • The evaluation of Fault sealing is divided into the evaluation of vertical sealing and the evaluation of lateral sealing. Previous studies mostly adopted the comprehensive fuzzy evaluation method to comprehensively evaluate the fault sealing performance. However, the evaluation results of the fuzzy comprehensive evaluation method are affected by the evaluation score and weight coefficient, which leads to the following two problems. Firstly, the evaluation score of each parameter of the traditional comprehensive evaluation method is obtained through the principle of maximum membership degree, ignoring the internal differences of the same kind of evaluation standards, resulting in low accuracy; secondly, the weight coefficient adopts empirical assignment or equivalent weight assignment, which is different from the actual regional geological environment. This study comprehensively considers the qualitative parameters such as fault mechanics background, lithology opposition relationship and fault reservoir configuration relationship, combined with the influence of quantitative parameters such as fault rock shale content, section normal pressure, fault reservoir displacement pressure and fault stress characteristics, so as to realize the quantitative score representation of the evaluation standard of quantitative parameters. Based on the statistical analysis of regional parameters, the weight coefficients of various parameters are determined and improved by analytic hierarchy process. The weight coefficient is more in line with the regional law. Block A of No.2 fault zone in Weixinan sag is selected as the target area for evaluation, and good results are obtained. Compared with previous research methods, the accuracy is significantly improved.

       

    • loading
    • Allan, U. S., 1989. Model for Hydrocarbon Migration and Entrapment within Faulted Structures. AAPG Bulletin, 73(7): 803-811. https://doi.org/10.1306/44b4a271-170a-11d7-8645000102c1865d
      Blanpied, M. L., Lockner, D. A., Byerlee, J. D., 1995. Frictional Slip of Granite at Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 100(B7): 13045-13064. https://doi.org/10.1029/95jb00862
      Chen, K., Zhou, J. X., Zhang, H., et al., 2019. The Research and Application of the Reservoir Controlling Mechanism for the No. 2 Fracture Zone, Weixi'nan Sag. Haiyang Xuebao, 41(7): 92-102 (in Chinese with English abstract).
      Deng, J. G., Wang, X., Wang, W. F., 1999. Multi-Grade Fuzzy Comprehensive Judgement to Evaluate the Fault-Block Traps in Luipu Region. Fault-Block Oil & Gas Field, 6(6): 5-9 (in Chinese with English abstract).
      Downey, M. W., 1984. Evaluating Seals for Hydrocarbon Accumulations. AAPG, 68(11): 1752-1763. https://doi.org/10.1306/ad461994-16f7-11d7-8645000102c1865d
      Fu, G., Shi, J. J., Lü, Y. F., 2013. Study of Ancient Displacement Pressure of Fault Rock Recovery and Its Sealing Characteristics. Journal of China University of Mining & Technology, 42(6): 996-1001 (in Chinese with English abstract).
      Hu, X. L., Lü, Y. F., et al., 2019. Improvement of Lateral Sealing Evaluation of Faults Based on SGR Threshold. Journal of China University of Mining & Technology, 48(6): 1330-1342 (in Chinese with English abstract).
      Hu, X. L., Lü, Y. F., Fu, G., et al., 2019. Quantitative Evaluation of Fault Vertical Sealing Ability of 1st Structure in Nanpu Sag. Earth Science, 44(11): 3882-3893 (in Chinese with English abstract).
      Indrevær, K., Stunitz, H., Bergh, S. G., 2014. On Palaeozoic-Mesozoic Brittle Normal Faults along the SW Barents Sea Margin: Fault Processes and Implications for Basement Permeability and Margin Evolution. Journal of the Geological Society, 171(6): 831-846. https://doi.org/10.1144/jgs2014-018
      Jiang, P., Qin, C. Y., Yang, X. B., et al., 2020. Sedimentary Architecture, Distribution Features and Genesis of Steep Slope Fan in Upper Liushagang Formation, Weixi'nan Sag. Earth Science, 45(2): 534-546 (in Chinese with English abstract).
      Jin, C. T., Fu, X. F., Liu, S. B., 2012. Review on Evaluation Methods of Lateral Sealing of Fault. Fault-Block Oil & Gas Field, 19(3): 297-301 (in Chinese with English abstract).
      Knipe, R. J., 1997. Juxtaposition and Seal Diagrams to Help Analyze Fault Seals in Hydrocarbon Reservoirs. AAPG Bulletin, 81(2): 187-195. https://doi.org/10.1306/522b42df-1727-11d7-8645000102c1865d
      Liu, Y. M., Wu, Z. P., Yan, S. Y., et al., 2021. Identification of Eocene Tectonic Transition and Its Geological Significance of Rift Basins Offshore China: A Case Study in Weixi'nan Sag, Beibu Bay Basin. Earth Science, 46(6): 2145-2156 (in Chinese with English abstract).
      Liu, Y. R., 2009. Quantitative Evaluation of Fault Sealing Mode and Capacity in the Subei Basin. Petroleum Geology & Experiment, 31(5): 531-536 (in Chinese with English abstract).
      Lü, Y. F., Fu, G., Fu, X. F., et al., 2013. The Transport and Sealing Effect of Faults in Oil And Gas Reservoirs. Petroleum Industry Press, Beijing (in Chinese).
      Lü, Y. F., Wang, W., Hu, X. L., et al., 2016. Quantitative Evaluation Method of Fault Lateral Sealing. Petroleum Exploration and Development, 43(2): 310-316 (in Chinese with English abstract).
      Morris, A., Ferrill, D. A., Henderson, D. B., 1996. Slip-Tendency Analysis and Fault Reactivation. Geology, 24(3): 275-278. https://doi.org/ 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2 doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
      Pei, F. G., He, M. X., Fang, H., et al., 2023. Evaluation of Deep Geothermal Resources Potential in the Songliao Basin Based on the Fuzzy Mathematics. Earth Science, 48(3): 1058-1079 (in Chinese with English abstract).
      Smith, D. A., 1966. Theoretical Considerations of Sealing and Non-Sealing Faults. AAPG Bulletin, 50(2): 363-374. https://doi.org/10.1306/5d25b48f-16c1-11d7-8645000102c1865d
      Song, S. D., 2009. Controlling Factors of Faults Vertical Sealing and Its Relationship with the Pool Formation of Oil and Gas. Inner Mongolia Petrochemical Industry, 35(24): 204-206 (in Chinese with English abstract).
      Sun, G. Q., Zhang, G. C., Wang, Q., et al., 2011. Prediction of Fault Sealing Using Fuzzy Comprehensive Evaluation Method. Fault-Block Oil & Gas Field, 18(3): 281-284 (in Chinese with English abstract).
      Qiu, Y. B., Zha, M., Qu, J. X., 2007. Fault Sealing Performance in Chenbao and Eastern Chenbao Areas, Gaoyou Sag. Petroleum Exploration and Development, 34(2): 197-201 (in Chinese with English abstract).
      Wang, D. Y., Zha, M., Yang, Y., 2006. Quantitative Study of Fualt Sealing with Synthetic Fuzzy Judgement. Fualt-Block Oil & Gas, 13(4): 5-7, 89 (in Chinese with English abstract).
      Wang, X. X., Dai, J. S., Li, X. H., et al., 2013. Assessment of Fault Sealing Ability: An Example from the Shigang Fault Zone in the Jinhu Depression, Northern Jiangsu. Sedimentary Geology and Tethyan Geology, 33(3): 69-75 (in Chinese with English abstract).
      Zhang, C., Yang, B., Hu, Z. G., et al., 2020. Evaluation of Fault Sealing Ability of Laizhou Bay Sag. Fault-Block Oil & Gas Field, 27(6): 734-738 (in Chinese with English abstract).
      Zhang, D. F., Fang, S., Qiu, S. K., 2021. Current Research States and Development Directions of Fault Sealing Properties. Journal of Jilin University (Earth Science Edition), 51(1): 65-80 (in Chinese with English abstract).
      Zhou, Z. Q., Zhu, H. T., Liu, Q. H., et al., 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535 (in Chinese with English abstract).
      陈奎, 周家雄, 张辉, 等, 2019. 涠西南凹陷二号断裂带断裂控藏研究及应用. 海洋学报, 41(7): 92-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201907008.htm
      邓俊国, 王贤, 王伟锋, 1999. 模糊综合评判技术在柳堡断块圈闭评价中的应用. 断块油气田, 6(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT199906001.htm
      付广, 史集建, 吕延防, 2013. 断层岩古排替压力恢复及其封闭性能研究. 中国矿业大学学报, 42(6): 996-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201306018.htm
      胡欣蕾, 吕延防, 2019. 基于SGR下限值法对断层侧向封闭性评价方法的改进. 中国矿业大学学报, 48(6): 1330-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906017.htm
      胡欣蕾, 吕延防, 付广, 等, 2019. 南堡凹陷1号构造断层垂向封闭能力定量评价. 地球科学, 44(11): 3882-3893. doi: 10.3799/dqkx.2017.574
      姜平, 秦春雨, 杨希冰, 等, 2020. 涠西南凹陷一号断裂陡坡带扇体沉积展布特征及主控因素. 地球科学, 45(2): 534-546. doi: 10.3799/dqkx.2018.369
      金崇泰, 付晓飞, 柳少波, 2012. 断层侧向封堵性评价方法综述. 断块油气田, 19(3): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201203008.htm
      刘一鸣, 吴智平, 颜世永, 等, 2021. 中国近海裂陷盆地始新世构造变革的厘定及地质意义: 以北部湾盆地涠西南凹陷为例. 地球科学, 46(6): 2145-2156. doi: 10.3799/dqkx.2020.205
      刘玉瑞, 2009. 苏北盆地断层封堵类型及定量评价. 石油实验地质, 31(5): 531-536. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200905018.htm
      吕延防, 付广, 付晓飞, 等, 2013. 断层对油气的输导与封堵作用. 北京: 石油工业出版社.
      吕延防, 王伟, 胡欣蕾, 等, 2016. 断层侧向封闭性定量评价方法. 石油勘探与开发, 43(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602024.htm
      裴发根, 何梅兴, 方慧, 等, 2023. 基于模糊数学法的松辽盆地深层地热资源潜力评价. 地球科学, 48(3): 1058-1079. doi: 10.3799/dqkx.2022.179
      宋守德, 2009. 断层垂向封闭性的影响因素及其对油气成藏的控制作用. 内蒙古石油化工, 35(24): 204-206. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200924093.htm
      孙国强, 张功成, 王琪, 等, 2011. 利用模糊综合评价法进行断层封闭性预测. 断块油气田, 18(3): 281-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201103006.htm
      邱贻博, 查明, 曲江秀, 2007. 高邮凹陷陈堡及陈堡东地区断层封闭性研究. 石油勘探与开发, 34(2): 197-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200702013.htm
      王东晔, 查明, 杨勇, 2006. 运用模糊综合评判方法定量研究断层封闭性. 断块油气田, 13 (4): 5-7, 89. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200604001.htm
      王新新, 戴俊生, 李旭航, 等, 2013. 多种方法评价断层封闭性: 以金湖凹陷石港断裂带为例. 沉积与特提斯地质, 33(3): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201303010.htm
      张驰, 杨波, 胡忠贵, 等, 2020. 莱州湾凹陷断层封闭性评价. 断块油气田, 27(6): 734-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006013.htm
      张丹凤, 方石, 邱善坤, 2021. 断层封启性的研究现状与发展方向. 吉林大学学报(地球科学版), 51(1): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101006.htm
      周子强, 朱红涛, 刘强虎, 等, 2022. 南海北部湾盆地协调‒非协调供源样式与沉积交互作用耦合响应: 以涠西南凹陷C洼为例. 地球科学, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (621) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return