• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Cheng Jiwei, Zhang Feng, Li Xiangyang, 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
    Citation: Cheng Jiwei, Zhang Feng, Li Xiangyang, 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312. doi: 10.3799/dqkx.2022.229

    Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin

    doi: 10.3799/dqkx.2022.229
    • Received Date: 2021-11-18
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Fractured shale often represents complex anisotropy characteristics. A proper rock physics model can be helpful for accurate prediction of fracture properties. In this paper it proposes an orthorhombic anisotropic rock physics model, considering the distribution characteristics of fracture dip and accurate characterization of VTI (Vertically Transverse Isotropy) characteristics, for the fractured shale reservoir of Wufeng-Longmaxi Formation in Weiyuan-Rongxian area, Sichuan Basin. The modeling results of the well analysis show that the average fracture dip, the standard deviation of fracture dip, and the variation range of fracture dip in shale have significant influence on azimuthal anisotropy. The anisotropy parameters related to S-wave velocity $ {\gamma }^{\left(2\right)} $ and $ {\gamma }^{\left(3\right)} $ are only sensitive to fracture density and insensitive to filled fluids, and can be used for prediction of fracture density in seismic exploration. The anisotropy parameters related to P-wave velocity $ {\varepsilon }^{\left(2\right)} $, $ {\delta }^{\left(2\right)} $, $ {\delta }^{\left(3\right)} $, $ {\varepsilon }^{\left(3\right)} $ are simultaneously affected by fracture density and filled fluid, and can be used to detect filled fluids of fracture by combining the anisotropy parameters related to S-wave velocity. In summary, the rock-physics modelling proposed in this paper is suitable for southern marine fractured shale reservoirs represented by Wufeng-Longmaxi Formation shale, and provides a theory for seismic prediction of fracture properties for shale reservoirs.

       

    • loading
    • Bakulin, A., Grechka, V., Tsvankin, I., 2000. Estimation of Fracture Parameters from Reflection Seismic Data-Part II: Fractured Models with Orthorhombic Symmetry. Geophysics, 65(6): 1803-1817. https://doi.org/10.1190/1.1444864
      Batzle, M. L., Wang, Z. J., 1992. Seismic Properties of Pore Fluids. Geophysics, 57(11): 1396-1408. https://doi.org/10.1190/1.1443207
      Carcione, J. M., Helle, H. B., Avseth, P., 2011. Source-Rock Seismic-Velocity Models: Gassmann versus Backus. Geophysics, 76(5): N37-N45. https://doi.org/10.1190/geo2010-0258.1
      Cholach, P. Y., Schmitt, D. R., 2006. Intrinsic Elasticity of a Textured Transversely Isotropic Muscovite Aggregate: Comparisons to the Seismic Anisotropy of Schists and Shales. Journal of Geophysical Research, 111(B9): B09410. https://doi.org/10.1029/2005jb004158
      Deng, J. X., Wang, H., Zhou, H., et al., 2015. Microtexture, Seismic Rock Physical Properties and Modeling of Longmaxi Formation Shale. Chinese Journal of Geophysics, 58(6): 2123-2136 (in Chinese with English abstract).
      Feng, Q. H., Xu, S. Q., Wang, S., et al., 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313 (in Chinese with English abstract).
      Gui, J. C., Chen, P., Ma, T. S., 2019. The Spatial Distribution of Elastic Parameters of Orthotropic Rocks. Journal of Southwest Petroleum University (Science & Technology Edition), 41(3): 13-28 (in Chinese with English abstract).
      Gui, J. C., Ma, T. S., Chen, P., 2020. Rock Physics Modeling of Transversely Isotropic Shale: An Example of the Longmaxi Formation in the Sichuan Basin. Chinese Journal of Geophysics, 63(11): 4188-4204 (in Chinese with English abstract). doi: 10.6038/cjg2020N0294
      Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng- Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract).
      Guo, X. S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract).
      Hornby, B. E., Schwartz, L. M., Hudson, J. A., 1994. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales. Geophysics, 59(10): 1570-1583. https://doi.org/10.1190/1.1443546
      Hudson, J. A., 1980. Overall Properties of a Cracked Solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2): 371-384. https://doi.org/10.1017/S0305004100057674
      Hudson, J. A., 1981. Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks. Geophysical Journal International, 64(1): 133-150. https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
      Jones, L. E. A., Wang, H. F., 1981. Ultrasonic Velocities in Cretaceous Shales from the Williston Basin. Geophysics, 46(3): 288-297. https://doi.org/10.1190/1.1441199
      Kaarsberg, E. A., 1959. Introductory Studies of Natural and Artificial Argillaceous Aggregates by Sound- Propagation and X-Ray Diffraction Methods. The Journal of Geology, 67(4): 447-472. https://doi.org/10.1086/626597
      Li, S. G., Xu, T. J., Lü, Q. B., et al., 2019. Deep Shale Gas Dual "Sweet Spot" Parameter Seismic Prediction Technology. Natural Gas Industry, 39(S1): 311-317 (in Chinese).
      Li, X. Y., Wang, J. S., 2016. Recent Advances in Multicomponent Seismic and Fractured Reservoir Characterization. Petroleum Science Bulletin, 1(1): 45-60 (in Chinese with English abstract).
      Liu, Z. C., Zhang, F., Li, X. Y., 2019. Elastic Anisotropy and Its Influencing Factors in Organic-Rich Marine Shale of Southern China. Scientia Sinica Terrae, 49(11): 1801-1816 (in Chinese).
      Lonardelli, I., Wenk, H. R., Ren, Y., 2007. Preferred Orientation and Elastic Anisotropy in Shales. Geophysics, 72(2): D33-D40. https://doi.org/10.1190/1.2435966
      Ma, Y. S., Cai, X. Y., Zhao, P. R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese with English abstract).
      Qian, K. R., Zhang, F., Chen, S. Q., et al., 2016. A Rock Physics Model for Analysis of Anisotropic Parameters in a Shale Reservoir in Southwest China. Journal of Geophysics and Engineering, 13(1): 19-34. https://doi.org/10.1088/1742-2132/13/1/19
      Rüger, A., 1997. P-Wave Reflection Coefficients for Transversely Isotropic Models with Vertical and Horizontal Axis of Symmetry. Geophysics, 62(3): 713-722. https://doi.org/10.1190/1.1444181
      Sarout, J., Guéguen, Y., 2008. Anisotropy of Elastic Wave Velocities in Deformed Shales: Part 2-Modeling Results. Geophysics, 73(5): D91-D103. https://doi.org/10.1190/1.2952745
      Sayers, C. M., 1994. The Elastic Anisotrophy of Shales. Journal of Geophysical Research: Solid Earth, 99(B1): 767-774. https://doi.org/10.1029/93jb02579
      Sayers, C. M., 2013. The Effect of Kerogen on the Elastic Anisotropy of Organic-Rich Shales. Geophysics, 78(2): D65-D74. https://doi.org/10.1190/geo2012-0309.1
      Schoenberg, M., 1980. Elastic Wave Behavior across Linear Slip Interfaces. The Journal of the Acoustical Society of America, 68(5): 1516-1521. https://doi.org/10.1121/1.385077
      Schoenberg, M., Douma, J., 1988. Elastic Wave Propagation in Media with Parallel Fractures and Aligned Cracks. Geophysical Prospecting, 36(6): 571-590. https://doi.org/10.1111/j.1365-2478.1988.tb02181.x
      Schoenberg, M., Helbig, K., 1997. Orthorhombic Media: Modeling Elastic Wave Behavior in a Vertically Fractured Earth. Geophysics, 62(6): 1954-1974. https://doi.org/10.1190/1.1444297
      Schoenberg, M., Sayers, C. M., 1995. Seismic Anisotropy of Fractured Rock. Geophysics, 60(1): 204-211. https://doi.org/10.1190/1.1443748
      Shao, C. R., Yin, X. Y., Zhang, F. M., et al., 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.04.017
      Shi, S. Z., Liu, Z. Y., Feng, J. A., et al., 2020. Using 3D Seismic Exploration to Detect Ground Fissure. Advances in Geo-Energy Research, 4(1): 13-19. https://doi.org/10.26804/ager.2020.01.02
      Thomsen, L., 1986. Weak Elastic Anisotropy. Geophysics, 51(10): 1954-1966. https://doi.org/10.1190/1.1442051
      Tsvankin, I., 1997. Anisotropic Parameters and P-Wave Velocity for Orthorhombic Media. Geophysics, 62(4): 1292-1309. https://doi.org/10.1190/1.1444231
      Vernik, L., Nur, A., 1992. Ultrasonic Velocity and Anisotropy of Hydrocarbon Source Rocks. Geophysics, 57(5): 727-735. https://doi.org/10.1190/1.1443286
      Vernik, L., Liu, X. Z., 1997. Velocity Anisotropy in Shales: A Petrophysical Study. Geophysics, 62(2): 521-532. https://doi.org/10.1190/1.1444162
      Wang, Z. J., 2002. Seismic Anisotropy in Sedimentary Rocks, Part 2: Laboratory Data. Geophysics, 67(5): 1423-1440. https://doi.org/10.1190/1.1512743
      Wei, L. M., Wang, Y., Zhang, T. C., et al., 2019. Establishment of Geological Model of Deep Shale Reservoir in Southern Sichuan Basin. Natural Gas Industry, 39(S1): 66-70 (in Chinese with English abstract).
      Wei, Q. Q., Wang, Y., Han, D. H., et al., 2021. Combined Effects of Permeability and fluid Saturation on Seismic Wave Dispersion and Attenuation in Partially-Saturated Sandstone. Advances in Geo-Energy Research, 5(2): 181-190. https://doi.org/10.46690/ager.2021.02.07
      Wenk, H. R., Lonardelli, I., Franz, H., et al., 2007. Preferred Orientation and Elastic Anisotropy of Illite-Rich Shale. Geophysics, 72(2): E69-E75. https://doi.org/10.1190/1.2432263
      Winterstein, D. F., 1990. Velocity Anisotropy Terminology for Geophysicists. Geophysics, 55(8): 1070-1088. https://doi.org/10.1190/1.1442919
      Xiao, B., Liu, S. G., Ran, B., et al., 2021. Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China. Earth Science, 46(7): 2449-2465 (in Chinese with English abstract).
      Yu, W. H., Zhang, L. Q., Wang, J. Y., et al., 2003. Constitutive Problem for Seismic Wave Propagation in Discrete Media. Earth Science, 28(3): 315-322 (in Chinese with English abstract).
      Zhang, F., 2017. Estimation of Anisotropy Parameters for Shales Based on an Improved Rock Physics Model, Part 2: Case Study. Journal of Geophysics and Engineering, 14(2): 238-254. https://doi.org/10.1088/1742-2140/aa5afa
      Zhang, F., 2019. A Modified Rock Physics Model of Overmature Organic-Rich Shale: Application to Anisotropy Parameter Prediction from Well Logs. Journal of Geophysics and Engineering, 16(1): 92-104. https://doi.org/10.1093/jge/gxy008
      Zhang, F., Li, X. Y., Qian, K. R., 2017. Estimation of Anisotropy Parameters for Shale Based on an Improved Rock Physics Model, Part 1: Theory. Journal of Geophysics and Engineering, 14(1): 143-158. https://doi.org/10.1088/1742-2140/14/1/143
      邓继新, 王欢, 周浩, 等, 2015. 龙马溪组页岩微观结构、地震岩石物理特征与建模. 地球物理学报, 58(6): 2123-2136.
      冯其红, 徐世乾, 王森, 等, 2017. 基于嵌入离散裂缝的页岩气藏视渗透率模型. 地球科学, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
      桂俊川, 陈平, 马天寿, 2019. 正交各向异性岩石弹性参数的空间展布. 西南石油大学学报(自然科学版), 41(3): 13-28.
      桂俊川, 马天寿, 陈平, 2020. 横观各向同性页岩岩石物理模型建立——以龙马溪组页岩为例. 地球物理学报, 63(11): 4188-4204. doi: 10.6038/cjg2020N0294
      郭伟, 冯庆来, Khan, M. Z., 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      郭旭升, 2017. 上扬子地区五峰组-龙马溪组页岩层序地层及演化模式. 地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086
      李曙光, 徐天吉, 吕其彪, 等, 2019. 深层页岩气双"甜点"参数地震预测技术. 天然气工业, 39(增刊1): 113-117.
      李向阳, 王九拴, 2016. 多波地震勘探及裂缝储层预测研究进展. 石油科学通报, 1(1): 45-60.
      刘子淳, 张峰, 李向阳, 2019. 中国南方富有机质海相页岩弹性各向异性特征和影响因素. 中国科学: 地球科学, 49(11): 1801-1816.
      马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574.
      邵才瑞, 印兴耀, 张福明, 等, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707. http://www.earth-science.net/article/id/1876
      魏力民, 王岩, 张天操, 等, 2019. 四川盆地南部深层页岩储层地质模型的建立. 天然气工业, 39(S1): 66-70.
      肖斌, 刘树根, 冉波, 等, 2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究. 地球科学, 46(7): 2449-2465. doi: 10.3799/dqkx.2020.208
      於文辉, 张丽琴, 王家映, 等, 2003. 离散介质中地震波传播的本构问题. 地球科学, 28(3): 315-322. http://www.earth-science.net/article/id/1260
    • dqkxzx-49-1-299-附录.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (889) PDF downloads(312) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return