• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Liu Xiepan, Yin Kunlong, Xiao Changgui, Chen Lixia, Zeng Taorui, Li Ye, Liu Zhenyi, Gong Quanbing, Chen Weiqun, 2024. Meteorological Early Warning of Landslide Based on I⁃D⁃R Threshold Model. Earth Science, 49(3): 1039-1051. doi: 10.3799/dqkx.2022.233
    Citation: Liu Xiepan, Yin Kunlong, Xiao Changgui, Chen Lixia, Zeng Taorui, Li Ye, Liu Zhenyi, Gong Quanbing, Chen Weiqun, 2024. Meteorological Early Warning of Landslide Based on I⁃D⁃R Threshold Model. Earth Science, 49(3): 1039-1051. doi: 10.3799/dqkx.2022.233

    Meteorological Early Warning of Landslide Based on I⁃D⁃R Threshold Model

    doi: 10.3799/dqkx.2022.233
    • Received Date: 2022-04-29
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • The establishment of the multi-dimensional meteorological early warning criterion of landslide and the division of the "grid" early warning unit can provide a scientific basis for the landslide early warning, for the purpose of which 205 rainfall-induced landslides in Panan County, Zhejiang Province were studied in this paper. Firstly, based on the average effective rainfall intensity-diachronic (I-D) threshold model, the critical threshold curves were divided by ordinary least squares regression (OLSQ) and quantile regression (QR). Secondly, the I-D-R threshold model was established by the I-D threshold model optimized by considering the daily rainfall (R), and different parameter estimation methods were used to compare the accuracy of different threshold models. The optimal threshold model was considered as the meteorological early warning criterion for landslide disasters in Pan'an County. Finally, considering the difference of rainfall distribution, the township level grid early warning unit was established by the terrain zoning and Voronoi diagram (VD) of Pan'an. The results show that: (1) The I⁃D⁃R threshold model has better early warning accuracy than the I⁃D model. The I⁃D⁃R threshold model based on QR has a better warning ability, and the accuracy of the threshold degree of warning and above is increased to 50%, and the accuracy of the threshold level of special attention and above is increased to 88.9%; (2) the rainfall conditions with I⁃D⁃R based on QR rainfall threshold are proposed as the early warning criteria (red, orange, yellow and blue) of 51 early warning units in Pan'an County, and the emergency response measures are put forward. A new threshold model is established on the basis of the research results, which can provide reference for regional meteorological early warning in Pan'an County.

       

    • loading
    • Bai, S. B., Wang, J., Thiebes, B., et al., 2014. Analysis of the Relationship of Landslide Occurrence with Rainfall: A Case Study of Wudu County, China. Arabian Journal of Geosciences, 7(4): 1277-1285. https://doi.org/10.1007/s12517⁃013⁃0939⁃9
      Caine, N., 1980. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler Series A, Physical Geography, 62(1-2): 23-27. https://doi.org/10.2307/520449
      Campbell, R. H., 1975. Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California. U. S. Geological Survey, Reston.
      Croley, T. E., Hartmann, H. C., 1985. Resolving Thiessen Polygons. Journal of Hydrology, 76(3-4): 363-379. https://doi.org/10.1016/0022⁃1694(85)90143⁃X
      Crozier, M. J., 1986. Landslides: Causes, Consequences and Environment. Croom Helm, London.
      Feng, H. J., Zhou, A. G., Tang, X. M., et al., 2016. Development and Distribution Characteristics of Debris Flow in Zhejiang Province and Its Regional Forecast. Earth Science, 41(12): 2088-2099 (in Chinese with English abstract).
      Glade, T., Crozier, M., Smith, P., 2000. Applying Probability Determination to Refine Landslide⁃Triggering Rainfall Thresholds Using an Empirical "Antecedent Daily Rainfall Model". Pure and Applied Geophysics, 157(6): 1059-1079. https://doi.org/10.1007/s000240050017
      Guo, Z. Z., Yin, K. L., Liu, Q. L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684 (in Chinese with English abstract).
      Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2007. Rainfall Thresholds for the Initiation of Landslides in Central and Southern Europe. Meteorology and Atmospheric Physics, 98(3): 239-267. https://doi.org/10.1007/s00703⁃007⁃0262⁃7
      Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity⁃Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346⁃007⁃0112⁃1
      Hong, Y., Hiura, H., Shino, K., et al., 2005. The Influence of Intense Rainfall on the Activity of Large⁃Scale Crystalline Schist Landslides in Shikoku Island, Japan. Landslides, 2(2): 97-105. https://doi.org/10.1007/s10346⁃004⁃0043⁃z
      Hu, L., Hu, Y. Q., Sun, P., et al., 2021. A Quantitative Analysis of Disaster Threshold and Landslide Risk of Rainfall⁃Type Landslide in Southeast Tibet. Journal of Catastrophology, 36(4): 194-199 (in Chinese with English abstract).
      Huang, F. M., Cao, Z. S., Yao, C., et al., 2021. Landslides Hazard Warning Based on Decision Tree and Effective Rainfall Intensity. Journal of Zhejiang University (Engineering Science), 55(3): 472-482 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall⁃Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract).
      Irawan, A. M., Virgianto, R. H., Safril, A., et al., 2019. Rainfall Threshold and Soil Moisture Indexes for the Initiation of Landslide in Banjarmangu Sub⁃District, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 243: 012028. https://doi.org/10.1088/1755⁃1315/243/1/012028
      Kim, S. W., Chun, K. W., Kim, M., et al., 2021. Effect of Antecedent Rainfall Conditions and Their Variations on Shallow Landslide⁃Triggering Rainfall Thresholds in South Korea. Landslides, 18(2): 569-582. https://doi.org/10.1007/s10346⁃020⁃01505⁃4
      Koenker, R., Hallock, K. F., 2001. Quantile Regression. Journal of Economic Perspectives, 15(4): 143-156. https://doi.org/10.1257/jep.15.4.143
      Lagomarsino, D., Segoni, S., Rosi, A., et al., 2015. Quantitative Comparison between Two Different Methodologies to Define Rainfall Thresholds for Landslide Forecasting. Natural Hazards and Earth System Sciences, 15(10): 2413-2423. https://doi.org/10.5194/nhess⁃15⁃2413⁃201510.5194/nhessd⁃3⁃891⁃2015
      Lee, D. H., Lai, M. H., Wu, J. H., et al., 2013. Slope Management Criteria for Alishan Highway Based on Database of Heavy Rainfall⁃Induced Slope Failures. Engineering Geology, 162: 97-107. https://doi.org/10.1016/j.enggeo.2013.04.012
      Li, C. J., Ma, T. H., Li, W., et al., 2010. Fractal Relation of Landslide Frequency and Rainfall. The Chinese Journal of Geological Hazard and Control, 21(1): 87-93 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2010.01.018
      Lin, W., Li, Y. Y., Xu, Y., et al., 2020. Rainfall Thresholds of Rainfall⁃Triggered Landslides in Cili County, Hunan Province. Journal of Yangtze River Scientific Research Institute, 37(2): 48-54 (in Chinese with English abstract).
      Lumb, P., 1975. Slope Failures in Hong Kong. Quarterly Journal of Engineering Geology, 8(1): 31-65. https://doi.org/10.1144/gsl.qjeg.1975.008.01.02
      Luo, Y., He, S. M., He, J. C., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide. Earth Science, 39(9): 1357-1363 (in Chinese with English abstract).
      Ma, T. H., Li, C. J., Lu, Z. M., et al., 2014. An Effective Antecedent Precipitation Model Derived from the Power⁃Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 216: 187-192. https://doi.org/10.1016/j.geomorph.2014.03.033
      Martinović, K., Gavin, K., Reale, C., et al., 2018. Rainfall Thresholds as a Landslide Indicator for Engineered Slopes on the Irish Rail Network. Geomorphology, 306: 40-50. https://doi.org/10.1016/j.geomorph.2018.01.006
      Melillo, M., Brunetti, M. T., Peruccacci, S., et al., 2015. An Algorithm for the Objective Reconstruction of Rainfall Events Responsible for Landslides. Landslides, 12(2): 311-320. https://doi.org/10.1007/s10346⁃014⁃0471⁃3
      Peng, J. B., Fan, Z. J., Wu, D., et al., 2015. Heavy Rainfall Triggered Loess⁃Mudstone Landslide and Subsequent Debris Flow in Tianshui, China. Engineering Geology, 186: 79-90. https://doi.org/10.1016/j.enggeo.2014.08.015
      Peng, Q. Y., 2020. Evaluation and Data Analysis of Gansu Landslide and Debris Flow Monitoring System (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Rosi, A., Segoni, S., Catani, F., et al., 2012. Statistical and Environmental Analyses for the Definition of a Regional Rainfall Threshold System for Landslide Triggering in Tuscany (Italy). Journal of Geographical Sciences, 22(4): 617-629. https://doi.org/10.1007/s11442⁃012⁃0951⁃0
      Wang, S. W., Sun, L. S., Rong, J., et al., 2014. Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon. Sustainability, 6(4): 1821-1832. https://doi.org/10.3390/su6041821
      Wu, Y. P., Yin, K. L., Jiang, W., 2009. Early Warning of Landslide Risk in Yongjia County, Zhejiang Province. Journal of Natural Disasters, 18(2): 124-130 (in Chinese with English abstract).
      Wu, Y. P., Zhang, Q. X., Tang, H. M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895 (in Chinese with English abstract).
      Xia, M. X., Li, Y. Y., Wu, J. M., et al., 2021. Research on Rainfall Early Warning Threshold of Landslide Disaster in Zhangjiajie City Based on ID Statistical Model. Journal of Natural Disasters, 30(4): 203-212 (in Chinese with English abstract).
      Yang, L. H., Zhou, Z. C., 2014. Comparison of Ordinary Least Square Regression and Quantile Regression in the Study of Hydrological Elements of Yanhe River Basin. Science of Soil and Water Conservation, 12(5): 45-51 (in Chinese with English abstract).
      Zhang, G. R., Yin, K. L., Liu, L. L., et al., 2005. Warning System for Rain⁃Induced Landslides Based on Internet in Zhejiang Province, China. Earth Science, 30(2): 250-254 (in Chinese with English abstract).
      Zhang, Y., Wen, Z., Cheng, Y. J., 2020. A Discussion of the Relationship between Landslide Disaster and Rainfall Types in Bazhong of Sichuan. Hydrogeology & Engineering Geology, 47(2): 178-182 (in Chinese with English abstract).
      Zhao, B. R., Dai, Q., Han, D. W., et al., 2019. Probabilistic Thresholds for Landslides Warning by Integrating Soil Moisture Conditions with Rainfall Thresholds. Journal of Hydrology, 574: 276-287. https://doi.org/10.1016/j.jhydrol.2019.04.062
      冯杭建, 周爱国, 唐小明, 等, 2016. 浙江省泥石流灾害发育分布规律及区域预报. 地球科学, 41(12): 2088-2099. doi: 10.3799/dqkx.2016.514
      郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005
      胡磊, 胡玉乾, 孙鹏, 等, 2021. 藏东南地区降雨型滑坡致灾阈值及滑坡危险性量化分析. 灾害学, 36(4): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202104032.htm
      黄发明, 曹中山, 姚池, 等, 2021. 基于决策树和有效降雨强度的滑坡危险性预警. 浙江大学学报(工学版), 55(3): 472-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202103007.htm
      黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
      李长江, 麻土华, 李炜, 等, 2010. 滑坡频度‒降雨量的分形关系. 中国地质灾害与防治学报, 21(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201001023.htm
      林巍, 李远耀, 徐勇, 等, 2020. 湖南慈利县滑坡灾害的临界降雨量阈值研究. 长江科学院院报, 37(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002011.htm
      罗渝, 何思明, 何尽川, 2014. 降雨类型对浅层滑坡稳定性的影响. 地球科学, 39(9): 1357-1363. doi: 10.3799/dqkx.2014.118
      彭启园, 2020. 甘肃滑坡与泥石流监测体系评价与数据分析研究(硕士学位论文). 兰州: 兰州大学.
      吴益平, 殷坤龙, 姜玮, 2009. 浙江省永嘉县滑坡灾害风险预警研究. 自然灾害学报, 18(2): 124-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200902019.htm
      吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. doi: 10.3799/dqkx.2014.083
      夏梦想, 李远耀, 吴吉民, 等, 2021. 基于ID统计模型的张家界市滑坡灾害降雨预警阀值研究. 自然灾害学报, 30(4): 203-212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202104022.htm
      杨丽红, 周正朝, 2014. 最小二乘与分位数回归方法在河流水沙研究中的应用: 以陕北延河流域为例. 中国水土保持科学, 12(5): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201405008.htm
      张桂荣, 殷坤龙, 刘礼领, 等, 2005. 基于WEB的浙江省降雨型滑坡预警预报系统. 地球科学, 30(2): 250-254. http://www.earth-science.net/article/id/1446
      张勇, 温智, 程英建, 2020. 四川巴中市滑坡灾害与降雨雨型关系探讨. 水文地质工程地质, 47(2): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002024.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(5)

      Article views (696) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return