• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Liu Jingshou, Ding Wenlong, Yang Haimeng, Dai Peng, Wu Zhonghu, Zhang Guanjie, 2023. Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation. Earth Science, 48(7): 2572-2588. doi: 10.3799/dqkx.2022.234
    Citation: Liu Jingshou, Ding Wenlong, Yang Haimeng, Dai Peng, Wu Zhonghu, Zhang Guanjie, 2023. Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation. Earth Science, 48(7): 2572-2588. doi: 10.3799/dqkx.2022.234

    Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation

    doi: 10.3799/dqkx.2022.234
    • Received Date: 2022-03-22
    • Publish Date: 2023-07-25
    • The rock mechanical stratigraphy controls the development degree and genetic mechanism of natural fractures. Similarly, the development of fractures also affects the size and anisotropy of rock mechanical parameters. Affected by diagenesis and tectonics, the rock mechanics layer has migrated. Therefore, the rock mechanics layer that controls the development of fractures and the rock mechanics layer suitable for predicting the distribution of natural fractures may no longer exist. This paper proposes a method based on reservoir geomechanics modeling to analyze the evolution of rock mechanics layer under the control of structural factors. A three-dimensional fracture discrete network model was established through field observations, combined with rock mechanics experiments to determine the mechanical parameters of the rock and fracture surfaces, the method for determining the optimal representation unit size of the fractured reservoir mechanical parameters was determined, and the three-dimensional geomechanical model of the fractured reservoir was established. A three-cycle method is proposed to characterize the equivalent mechanical parameters of fractured reservoirs with different sizes and different orientations. The Young's modulus discriminant index and Poisson's ratio discriminant index are used to characterize the scale effect and anisotropy of the mechanical parameters of fractured reservoirs, and the evolution of rock mechanics layer is analyzed. The results show that the fracture combination pattern on the western edge of Ordos basin and the accuracy requirements of the later stress field simulation determine the optimal element size for geomechanical modeling to be 28 m. In geomechanical modeling, too small grid element scale can not completely describe the fracture development mode in the element. The development of natural fractures from the Yanshanian period to the Himalayan period to the present has resulted in an overall decrease in the equivalent Young's modulus and an overall increase in the Poisson's ratio of the rock mass in the Ordos Basin. The difference between the equivalent Young's modulus and the Poisson's ratio of the rock mass has decreased over time.

       

    • loading
    • Andhumoudine, A. B., Nie, X., Zhou, Q. B., et al., 2021. Investigation of Coal Elastic Properties Based on Digital Core Technology and Finite Element Method. Advances in Geo-Energy Research, 5(1): 53-63. https://doi.org/10.46690/ager.2021.01.06
      Chai, Y. T., Yin, S. D., 2021.3D Displacement Discontinuity Analysis of In-Situ Stress Perturbation near a Weak Faul. Advances in Geo-Energy Research, 5(3): 286-296. https://doi.org/10.46690/ager.2021.03.05
      Chen, S. H., Qiang, S., 2004. Composite Element Model for Discontinuous Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 41(5): 865-870. https://doi.org/10.1016/j.ijrmms.2004.01.009
      Darby, B. J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage: The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1-2): 13-24. https://doi.org/10.1016/S0012-821X(02)01026-9
      Dashti, R., Rahimpour-Bonab, H., Zeinali, M., 2018. Fracture and Mechanical Stratigraphy in Naturally Fractured Carbonate Reservoirs-A Case Study from Zagros Region. Marine and Petroleum Geology, 97: 466-479. https://doi.org/10.1016/j.marpetgeo.2018.06.027
      Dershowitz, W. S., Einstein, H. H., 1988. Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(1): 21-51. https://doi.org/10.1007/BF01019674
      Esmaieli, K., Hadjigeorgiou, J., Grenon, M., 2010. Estimating Geometrical and Mechanical REV Based on Synthetic Rock Mass Models at Brunswick Mine. International Journal of Rock Mechanics and Mining Sciences, 47(6): 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010
      Fan, J. M., Chen, X. D., Lei, Z. D., et al., 2019. Characteristics of Natural and Hydraulic Fractures in Tight Oil Reservoir in Ordos Basin and Its Implication to Field Development. Journal of China University of Petroleum (Edition of Natural Science), 43(3): 98-106 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2019.03.011
      Fan, X., Kulatilake, P. H. S. W., Chen, X., 2015. Mechanical Behavior of Rock-like Jointed Blocks with Multi-Non-Persistent Joints under Uniaxial Loading: A Particle Mechanics Approach. Engineering Geology, 190: 17-32. https://doi.org/10.1016/j.enggeo.2015.02.008
      Faraji, M., Rezagholilou, A., Ghanavati, M., et al., 2021. Breakouts Derived from Image Logs Aid the Estimation of Maximum Horizontal Stress: A Case Study from Perth Basin, Western Australia. Advances in Geo-Energy Research, 5(1): 8-24. https://doi.org/10.46690/ager.2021.01.03
      Feng, J. W., Dai, J. S., Ma, Z. R., et al., 2011. The Theoretical Model between Fracture Parameters and Stress Field of Low-Permeability Sandstones. Acta Petrolei Sinica, 32(4): 664-671 (in Chinese with English abstract).
      Feng, Y. W., Chen, Y., Zhao, Z. Y., et al., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601-3614 (in Chinese with English abstract). doi: 10.1007/s12182-020-00522-1?utm_source=TrendMD
      Guo, P., Yao, L. H., Ren, D. S., 2016. Simulation of Three-Dimensional Tectonic Stress Fields and Quantitative Prediction of Tectonic Fracture within the Damintun Depression, Liaohe Basin, Northeast China. Journal of Structural Geology, 86: 211-223. https://doi.org/10.1016/j.jsg.2016.03.007
      Heuze, F. E., 1980. Scale Effects in the Determination of Rock Mass Strength and Deformability. Rock Mechanics, 12(3-4): 167-192. https://doi.org/10.1007/BF01251024
      Ji, Z. Z., Dai, J. S., Wang, B. F., 2010. Q Uantitative Relationship between Crustal Stress and Parameters of Tectonic Fracture. Acta Petrolei Sinica, 31(1): 68-72 (in Chinese with English abstract).
      Jiang, L., Qiu, Z., Wang, Q. C., et al., 2016. Joint Development and Tectonic Stress Field Evolution in the Southeastern Mesozoic Ordos Basin, West Part of North China. Journal of Asian Earth Sciences, 127: 47-62. https://doi.org/10.1016/j.jseaes.2016.06.017
      Jing, L., 2003. A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3): 283-353. https://doi.org/10.1016/S1365-1609(03)00013-3
      Ju, W., Wang, J. L., Fang, H. H., et al., 2019. Paleotectonic Stress Field Modeling and Prediction of Natural Fractures in the Lower Silurian Longmaxi Shale Reservoirs, Nanchuan Region, South China. Marine and Petroleum Geology, 100: 20-30. https://doi.org/10.1016/j.marpetgeo.2018.10.052
      Khani, A., Baghbanan, A., Hashemolhosseini, H., 2013. Numerical Investigation of the Effect of Fracture Intensity on Deformability and REV of Fractured Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 63: 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006
      Kulatilake, P. H. S. W., Ucpirti, H., Wang, S., et al., 1992. Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-Persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses. Rock Mechanics and Rock Engineering, 25(4): 253-274. https://doi.org/10.1007/BF01041807
      Lamarche, J., Lavenu, A. P. C., Gauthier, B. D. M., et al., 2012. Relationships between Fracture Patterns, Geodynamics and Mechanical Stratigraphy in Carbonates (South-East Basin, France). Tectonophysics, 581: 231-245. https://doi.org/10.1016/j.tecto.2012.06.042
      Laubach, S. E., Olson, J. E., Gross, M. R., 2009. Mechanical and Fracture Stratigraphy. AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094
      Li, C. S., Zhang, W. X., Lei, Y., et al., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574 (in Chinese with English abstract).
      Li, Y. Y., Shang, Y. J., Yang, P., 2018. Modeling Fracture Connectivity in Naturally Fractured Reservoirs: A Case Study in the Yanchang Formation, Ordos Basin, China. Fuel, 211: 789-796. https://doi.org/10.1016/j.fuel.2017.09.109
      Liang, Z. Z., Wu, N., Li, Y. C., et al., 2019. Numerical Study on Anisotropy of the Representative Elementary Volume of Strength and Deformability of Jointed Rock Masses. Rock Mechanics and Rock Engineering, 52(11): 4387-4402. https://doi.org/10.1007/s00603-019-01859-9
      Liu, J. S., Ding, W. L., Gu, Y., et al., 2018. Methodology for Predicting Reservoir Breakdown Pressure and Fracture Opening Pressure in Low-Permeability Reservoirs Based on an in Situ Stress Simulation. Engineering Geology, 246: 222-232. https://doi.org/10.1016/j.enggeo.2018.09.010
      Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300 (in Chinese with English abstract).
      Liu, J. S., Ding, W. L., Yang, H. M., et al., 2017.3D Geomechanical Modeling and Numerical Simulation of In-Situ Stress Fields in Shale Reservoirs: A Case Study of the Lower Cambrian Niutitang Formation in the Cen'gong Block, South China. Tectonophysics, 712-713: 663-683. https://doi.org/10.1016/j.tecto.2017.06.030
      Liu, J. S., Mei, L. F., Ding, W. L., et al., 2023. Asymmetric Propagation Mechanism of Hydraulic Fracture Networks in Continental Reservoirs. GSA Bulletin, 135(3-4): 678-688. https://doi.org/10.1130/b36358.1
      Liu, J. S., Yang, H. M., Bai, J. P., et al., 2021. Numerical Simulation to Determine the Fracture Aperture in a Typical Basin of China. Fuel, 283: 118952. https://doi.org/10.1016/j.fuel.2020.118952
      Liu, J. S., Yang, H. M., Wu, X. F., et al., 2020. The in Situ Stress Field and Microscale Controlling Factors in the Ordos Basin, Central China. International Journal of Rock Mechanics and Mining Sciences, 135: 104482. https://doi.org/10.1016/j.ijrmms.2020.104482
      Liu, J. S., Yang, H. M., Xu, K., et al., 2022. Genetic Mechanism of Transfer Zones in Rift Basins: Insights from Geomechanical Models. GSA Bulletin, 134(9-10): 2436-2452. https://doi.org/10.1130/b36151.1
      Lyu, W. Y., Zeng, L. B., Zhou, S. B., et al., 2019. Natural Fractures in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in the Southwestern Ordos Basin, China. AAPG Bulletin, 103(10): 2343-2367. https://doi.org/10.1306/0130191608617115
      McGinnis, R. N., Ferrill, D. A., Morris, A. P., et al., 2017. Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration. Journal of Structural Geology, 95: 160-170. https://doi.org/10.1016/j.jsg.2017.01.001
      Ni, P. P., Wang, S. H., Wang, C. G., et al., 2017. Estimation of REV Size for Fractured Rock Mass Based on Damage Coefficient. Rock Mechanics and Rock Engineering, 50(3): 555-570. https://doi.org/10.1007/s00603-016-1122-x
      Salimzadeh, S., Usui, T., Paluszny, A., et al., 2017. Finite Element Simulations of Interactions between Multiple Hydraulic Fractures in a Poroelastic Rock. International Journal of Rock Mechanics and Mining Sciences, 99: 9-20. https://doi.org/10.1016/j.ijrmms.2017.09.001
      Sun, D. S., Zhuo, X. Z., Dan, Y., et al., 2021. Measurement and Distribution of Horizontal Minimum Principle Stress of Shale Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 45(5): 80-87 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.05.009
      Wu, N., Liang, Z. Z., Li, Y. C., et al., 2019. Effect of Confining Stress on Representative Elementary Volume of Jointed Rock Masses. Geomechanics and Engineering, 18(6): 627-638.
      Wu, Q., Kulatilake, P. H. S. W., 2012. REV and Its Properties on Fracture System and Mechanical Properties, and an Orthotropic Constitutive Model for a Jointed Rock Mass in a Dam Site in China. Computers and Geotechnics, 43: 124-142. https://doi.org/10.1016/j.compgeo.2012.02.010
      Wu, Z. H., Zuo, Y. J., Wang, S. Y., et al., 2017. Numerical Study of Multi-Period Palaeotectonic Stress Fields in Lower Cambrian Shale Reservoirs and the Prediction of Fractures Distribution: A Case Study of the Niutitang Formation in Feng'gang No. 3 Block, South China. Marine and Petroleum Geology, 80: 369-381. https://doi.org/10.1016/j.marpetgeo.2016.12.008
      Xu, X. Y., Wang, W. F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768 (in Chinese with English abstract).
      Yang, T. H., Tham, L. G., Tang, C. A., et al., 2004. Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks. Rock Mechanics and Rock Engineering, 37(4): 251-275. https://doi.org/10.1007/s00603-003-0022-z
      Zeng, L. B., Gong, L., Guan, C., et al., 2022. Natural Fractures and Their Contribution to Tight Gas Conglomerate Reservoirs: A Case Study in the Northwestern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 210: 110028. https://doi.org/10.1016/j.petrol.2021.110028
      Zeng, L. B., Li, X. Y., 2009. Fractures in Sandstone Reservoirs with Ultra-Low Permeability: A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bulletin, 93(4): 461-477. https://doi.org/10.1306/09240808047
      Zeng, W. T., Ding, W. L., Zhang, J. C., et al., 2013. Fracture Development in Paleozoic Shale of Chongqing Area (South China). Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Fractures Distribution. Journal of Asian Earth Sciences, 75: 267-279. https://doi.org/10.1016/j.jseaes.2013.07.015
      Zhang, W., Chen, J. P., Liu, C., et al., 2012. Determination of Geometrical and Structural Representative Volume Elements at the Baihetan Dam Site. Rock Mechanics and Rock Engineering, 45(3): 409-419. https://doi.org/10.1007/s00603-011-0191-0
      Zhang, W., Chen, J. P., Chen, H. E., et al., 2013. Determination of RVE with Consideration of the Spatial Effect. International Journal of Rock Mechanics and Mining Sciences, 61: 154-160. https://doi.org/10.1016/j.ijrmms.2013.02.013
      Zhao, W. T., Hou, G. T., Hari, K. R., 2016a. Two Episodes of Structural Fractures and Their Stress Field Modeling in the Ordos Block, Northern China. Journal of Geodynamics, 97: 7-21. https://doi.org/10.1016/j.jog.2016.02.005
      Zhao, J. L., Xu, H., Tang, D. Z., et al., 2016b. Coal Seam Porosity and Fracture Heterogeneity of Macrolithotypes in the Hancheng Block, Eastern Margin, Ordos Basin, China. International Journal of Coal Geology, 159: 18-29. https://doi.org/10.1016/j.coal.2016.03.019
      Zhao, J. L., Tang, D. Z., Xu, H., et al., 2016c. Characteristic of in Situ Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China. Rock Mechanics and Rock Engineering, 49(8): 3307-3322. https://doi.org/10.1007/s00603-016-0969-1
      Zhao, J. Y., An, X. P., Wang, J., et al., 2018. A Quantitative Evaluation for Well Pattern Adaptability in Ultra-Low Permeability Oil Reservoirs: A Case Study of Triassic Chang 6 and Chang 8 Reservoirs in Ordos Basin. Petroleum Exploration and Development, 45(3): 482-488 (in Chinese with English abstract).
      Zhao, W. T., Hou, G. T., 2017. Fracture Prediction in the Tight-Oil Reservoirs of the Triassic Yanchang Formation in the Ordos Basin, Northern China. Petroleum Science, 14(1): 1-23. doi: 10.1007/s12182-016-0141-2
      Zhou, W. Y., Jiao, Y. Q., Zhao, J. H., 2017. Sediment Provenance of the Intracontinental Ordos Basin in North China Craton Controlled by Tectonic Evolution of the Basin-Orogen System. The Journal of Geology, 125(6): 701-711. https://doi.org/10.1086/693861
      樊建明, 陈小东, 雷征东, 等, 2019. 鄂尔多斯盆地致密油藏天然裂缝与人工裂缝特征及开发意义. 中国石油大学学报(自然科学版), 43(3): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201903011.htm
      冯建伟, 戴俊生, 马占荣, 等, 2011. 低渗透砂岩裂缝参数与应力场关系理论模型. 石油学报, 32(4): 664-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm
      冯艳伟, 陈勇, 赵振宇, 等, 2021. 鄂尔多斯盆地中部地区马家沟组断裂控制天然气运移方向的流体包裹体证据. 地球科学, 46(10): 3601-3614. doi: 10.3799/dqkx.2020.384
      季宗镇, 戴俊生, 汪必峰, 2010. 地应力与构造裂缝参数间的定量关系. 石油学报, 31(1): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001013.htm
      李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007
      刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
      孙东生, 禚喜准, 淡永, 等, 2021. 页岩储层水平最小主应力实测与分布规律. 中国石油大学学报(自然科学版), 45(5): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202105009.htm
      徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768. doi: 10.3799/dqkx.2019.175
      赵继勇, 安小平, 王晶, 等, 2018. 超低渗油藏井网适应性定量评价方法——以鄂尔多斯盆地三叠系长6、长8油藏为例. 石油勘探与开发, 45(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (695) PDF downloads(114) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return