Citation: | Liu Mingliang, Zheng Anting, Shang Jianbo, Guo Qinghai, 2023. Progress in Study of Boron Geochemistry in High Temperature Geothermal Fluids. Earth Science, 48(3): 878-893. doi: 10.3799/dqkx.2022.235 |
Aggarwal, J. K., Palmer, M. R., Bullen, T. D., et al., 2000. The Boron Isotope Systematics of Icelandic Geothermal Waters: 1. Meteoric Water Charged Systems. Geochimica et Cosmochimica Acta, 64(4): 579-585. https://doi.org/10.1016/S0016-7037(99)00300-2
|
Aggarwal, J. K., Sheppard, D., Mezger, K., et al., 2003. Precise and Accurate Determination of Boron Isotope Ratios by Multiple Collector ICP-MS: Origin of Boron in the Ngawha Geothermal System, New Zealand. Chemical Geology, 199(3-4): 331-342. https://doi.org/10.1016/S0009-2541(03)00127-X
|
Al-Ammar, A., ReitznerovÁ, E., Barnes, R. M., 2000. Improving Boron Isotope Ratio Measurement Precision with Quadrupole Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55(12): 1861-1867. https://doi.org/10.1016/S0584-8547(00)00282-2
|
Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. https://doi.org/10.1016/0377-0273(85)90039-3
|
Arnórsson, S., Andrésdóttir, A., 1995. Processes Controlling the Distribution of Boron and Chlorine in Natural Waters in Iceland. Geochimica et Cosmochimica Acta, 59(20): 4125-4146. https://doi.org/10.1016/0016-7037(95)00278-8
|
Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat Source Beneath the Rehai (Hot Sea) Field of Tengchong from the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
|
Barnes, J. D., Cullen, J., Barker, S., et al., 2019. The Role of the Upper Plate in Controlling Fluid-Mobile Element (Cl, Li, B) Cycling through Subduction Zones: Hikurangi Forearc, New Zealand. Geosphere, 15(3): 642-658. https://doi.org/10.1130/ges02057.1
|
Barth, S., 1993. Boron Isotope Variations in Nature: A Synthesis. Geologische Rundschau, 82(4): 640-651. https://doi.org/10.1007/BF00191491
|
Battistel, M., Hurwitz, S., Evans, W. C., et al., 2016. The Chemistry and Isotopic Composition of Waters in the Low-Enthalpy Geothermal System of Cimino-Vico Volcanic District, Italy. Journal of Volcanology and Geothermal Research, 328: 222-229. https://doi.org/10.1016/j.jvolgeores.2016.11.005
|
Bégué, F., Deering, C. D., Gravley, D. M., et al., 2017. From Source to Surface: Tracking Magmatic Boron and Chlorine Input into the Geothermal Systems of the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 346: 141-150. https://doi.org/10.1016/j.jvolgeores.2017.03.008
|
Bernard, R., Taran, Y., Pennisi, M., et al., 2011. Chloride and Boron Behavior in Fluids of Los Humeros Geothermal Field (Mexico): A Model Based on the Existence of Deep Acid Brine. Applied Geochemistry, 26(12): 2064-2073. https://doi.org/10.1016/j.apgeochem.2011.07.004
|
Brown, L. D., Zhao, W. J., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688-1690. https://doi.org/10.1126/science.274.5293.1688
|
Chen, L. S., Booker, J. R., Jones, A. G., et al., 1996. Electrically Conductive Crust in Southern Tibet from INDEPTH Magnetotelluric Surveying. Science, 274(5293): 1694-1696. https://doi.org/10.1126/science.274.5293.1694
|
Chen, W. T., Ho, S. B., Lee, D. Y., 2009. Effect of pH on Boron Adsorption-Desorption Hysteresis of Soils. Soil Science, 174(6): 330-338. https://doi.org/10.1097/ss.0b013e3181a7e72e
|
Çöl, M., Çöl, C., 2003. Environmental Boron Contamination in Waters of Hisarcik Area in the Kutahya Province of Turkey. Food and Chemical Toxicology, 41(10): 1417-1420. https://doi.org/10.1016/s0278-6915(03)00160-1
|
Cullen, J. T., Hurwitz, S., Barnes, J. D., et al., 2021. The Systematics of Chlorine, Lithium, and Boron and δ37Cl, δ7Li, and δ11B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009589. https://doi.org/10.1029/2020GC009589
|
Ellis, A. J., 1970. Quantitative Interpretation of Chemical Characteristics of Hydrothermal Systems. Geothermics, 2: 516-528. https://doi.org/10.1016/0375-6505(70)90050-7
|
Fan, Q. S., Ma, Y. Q., Cheng, H. D., et al., 2015. Boron Occurrence in Halite and Boron Isotope Geochemistry of Halite in the Qarhan Salt Lake, Western China. Sedimentary Geology, 322: 34-42. https://doi.org/10.1016/j.sedgeo.2015.03.012
|
Farmer, J. R., Branson, O., Uchikawa, J., et al., 2019. Boric Acid and Borate Incorporation in Inorganic Calcite Inferred from B/Ca, Boron Isotopes and Surface Kinetic Modeling. Geochimica et Cosmochimica Acta, 244: 229-247. https://doi.org/10.1016/j.gca.2018.10.008
|
Foster, G. L., Lear, C. H., Rae, J. W. B., et al., 2012. The Evolution of pCO2, Ice Volume and Climate during the Middle Miocene. Earth and Planetary Science Letters, 341/342/343/344: 243-254. https://doi.org/10.1016/j.epsl.2012.06.007
|
Guinoiseau, D., Louvat, P., Paris, G., et al., 2018. Are Boron Isotopes a Reliable Tracer of Anthropogenic Inputs to Rivers over Time? Science of the Total Environment, 626: 1057-1068. https://doi.org/10.1016/j.scitotenv.2018.01.159
|
Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.12.002
|
Guo, Q. H., 2022. Environmental Effects of Harmful Constituents Derived from Geothermal Systems and Their Treatments. Acta Geologica Sinica, 96(5): 1767-1773 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.016
|
Guo, Q. H., Li, Y. M., Luo, L., 2019a. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
|
Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019b. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
|
Guo, Q. H., Planer-Friedrich, B., Luo, L., et al., 2020. Speciation of Antimony in Representative Sulfidic Hot Springs in the YST Geothermal Province (China) and Its Immobilization by Spring Sediments. Environmental Pollution, 266: 115221. https://doi.org/10.1016/j.envpol.2020.115221
|
Guo, Q. H., Planer-Friedrich, B., Yan, K., 2021. Tungstate Thiolation Promoting the Formation of High-Tungsten Geothermal Waters and Its Environmental Implications. Journal of Hydrology, 603: 127016. https://doi.org/10.1016/j.jhydrol.2021.127016
|
Guo, Q. H., Wang, Y. X., Liu, W., 2008. B, As, and F Contamination of River Water Due to Wastewater Discharge of the Yangbajing Geothermal Power Plant, Tibet, China. Environmental Geology, 56(1): 197-205. https://doi.org/10.1007/s00254-007-1155-2
|
Guo, Q. H., Wang, Y., Liu, W., 2009. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9-20. https://doi.org/10.1016/j.jvolgeores.2008.11.034
|
Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
|
Hemming, N. G., Hanson, G. N., 1992a. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 56(1): 537-543. https://doi.org/10.1016/0016-7037(92)90151-8
|
Hemming, N. G., Hanson, G. N., 1992b. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 56(1): 537-543. https://doi.org/10.1016/0016-7037(92)90151-8
|
Hemming, N. G., Reeder, R. J., Hanson, G. N., 1995. Mineral-Fluid Partitioning and Isotopic Fractionation of Boron in Synthetic Calcium Carbonate. Geochimica et Cosmochimica Acta, 59(2): 371-379. https://doi.org/10.1016/0016-7037(95)00288-B
|
Hogan, J. F., Blum, J. D., 2003. Boron and Lithium Isotopes as Groundwater Tracers: A Study at the Fresh Kills Landfill, Staten Island, New York, USA. Applied Geochemistry, 18(4): 615-627. https://doi.org/10.1016/S0883-2927(02)00153-1
|
Hoke, L., Lamb, S., Hilton, D. R., et al., 2000. Southern Limit of Mantle-Derived Geothermal Helium Emissions in Tibet: Implications for Lithospheric Structure. Earth and Planetary Science Letters, 180(3-4): 297-308. https://doi.org/10.1016/S0012-821X(00)00174-6
|
Hönisch, B., Hemming, N. G., 2005. Surface Ocean pH Response to Variations in pCO2 through Two Full Glacial Cycles. Earth and Planetary Science Letters, 236(1-2): 305-314. https://doi.org/10.1016/j.epsl.2005.04.027
|
Hou, Z. Q., Li, Z. Q., 2004. Possible Location for Underthrusting Front of the Indus Continent: Constraints from Helium Isotope of the Geothermal Gas in Southern Tibet and Eastern Tibet. Acta Geologica Sinica, 78(4): 482-493 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.04.007
|
Hu, G. Y., Li, Y. H., Fan, C. F., et al., 2015. In Situ LA-MC-ICP-MS Boron Isotope and Zircon U-Pb Age Determinations of Paleoproterozoic Borate Deposits in Liaoning Province, Northeastern China. Ore Geology Reviews, 65: 1127-1141. https://doi.org/10.1016/j.oregeorev.2014.09.005
|
Jiang, S. Y., Palmer, M. R., Slack, J. F., et al., 1999. Boron Isotope Systematics of Tourmaline Formation in the Sullivan Pb-Zn-Ag Deposit, British Columbia, Canada. Chemical Geology, 158(1-2): 131-144. https://doi.org/10.1016/S0009-2541(99)00023-6
|
Kaasalainen, H., Stefánsson, A., 2012. The Chemistry of Trace Elements in Surface Geothermal Waters and Steam, Iceland. Chemical Geology, 330-331: 60-85. https://doi.org/10.1016/j.chemgeo.2012.08.019
|
Kaasalainen, H., Stefánsson, A., Giroud, N., et al., 2015. The Geochemistry of Trace Elements in Geothermal Fluids, Iceland. Applied Geochemistry, 62: 207-223. https://doi.org/10.1016/j.apgeochem.2015.02.003
|
Katagiri, J., Yoshioka, T., Mizoguchi, T., et al., 2006. Basic Study on the Determination of Total Boron by Conversion to Tetrafluoroborate Ion (BF4-) Followed by Ion Chromatography. Analytica Chimica Acta, 570(1): 65-72. https://doi.org/10.1016/j.aca.2006.03.084
|
Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274(5293): 1692-1694. https://doi.org/10.1126/science.274.5293.1692
|
Leeman, W. P., Tonarini, S., Pennisi, M., et al., 2005. Boron Isotopic Variations in Fumarolic Condensates and Thermal Waters from Vulcano Island, Italy: Implications for Evolution of Volcanic Fluids. Geochimica et Cosmochimica Acta, 69(1): 143-163. https://doi.org/10.1016/j.gca.2004.04.004
|
Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research: Solid Earth, 114(B5): B05302. https://doi.org/10.1029/2008JB005881
|
Liao, Z. J., Zhao, P., 1999. Yunnan Tibet Geothermal Zone: Geothermal Resources and Typical Geothermal System. Science Press, Beijing (in Chinese).
|
Liebscher, A., Meixner, A., Romer, R., et al., 2005. Liquid-Vapor Fractionation of Boron and Boron Isotopes: Experimental Calibration at 400 ℃/23 MPa to 450 ℃/42 MPa. Geochimica et Cosmochimica Acta, 69(24): 5693-5704. https://doi.org/10.1016/j.gca.2005.07.019
|
Liu, M. L., 2018. Boron Geochemistry of the Geothermal Waters from Typical Hydrothermal Systems in Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Liu, M. L., Guo, Q. H., Luo, L., et al., 2020. Environmental Impacts of Geothermal Waters with Extremely High Boron Concentrations: Insight from a Case Study in Tibet, China. Journal of Volcanology and Geothermal Research, 397: 106887. https://doi.org/10.1016/j.jvolgeores.2020.106887
|
Liu, M. L., Guo, Q. H., Wu, G., et al., 2019. Boron Geochemistry of the Geothermal Waters from Two Typical Hydrothermal Systems in Southern Tibet (China): Daggyai and Quzhuomu. Geothermics, 82: 190-202. https://doi.org/10.1016/j.geothermics.2019.06.009
|
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
|
Liu, W. G., Xiao, Y. K., Peng, Z. C., et al., 2000. Boron Concentration and Isotopic Composition of Halite from Experiments and Salt Lakes in the Qaidam Basin. Geochimica et Cosmochimica Acta, 64(13): 2177-2183. https://doi.org/10.1016/S0016-7037(00)00363-X
|
Lü, Y. Y., Xu, R. H., Zhao, P., et al., 2008. Determination of Boron Isotope Ratios in Aqueous Samples by Multiple Collector ICP-MS. Geochimica, 37(1): 1-8 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2008.01.001
|
Lü, Y. Y., Zheng, M. P., Zhao, P., et al., 2014. Geochemical Processes and Origin of Boron Isotopes in Geothermal Water in the Yunnan-Tibet Geothermal Zone. Science in China (Series D), 44(9): 1968-1979 (in Chinese).
|
Mavromatis, V., Montouillout, V., Noireaux, J., et al., 2015. Characterization of Boron Incorporation and Speciation in Calcite and Aragonite from Co-Precipitation Experiments under Controlled pH, Temperature and Precipitation Rate. Geochimica et Cosmochimica Acta, 150: 299-313. https://doi.org/10.1016/j.gca.2014.10.024
|
Millot, R., Hegan, A., Négrel, P., 2012. Geothermal Waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr Isotopes Characterization. Applied Geochemistry, 27(3): 677-688. https://doi.org/10.1016/j.apgeochem.2011.12.015
|
Millot, R., Négrel, P., Petelet-Giraud, E., 2007. Multi-Isotopic (Li, B, Sr, Nd) Approach for Geothermal Reservoir Characterization in the Limagne Basin (Massif Central, France). Applied Geochemistry, 22(11): 2307-2325. https://doi.org/10.1016/j.apgeochem.2007.04.022
|
Moore, J. N., Norman, D. I., Kennedy, B. M., 2001. Fluid Inclusion Gas Compositions from an Active Magmatic-Hydrothermal System: a Case Study of the Geysers Geothermal Field, USA. Chemical Geology, 173(1-3): 3-30. https://doi.org/10.1016/S0009-2541(00)00265-5
|
Mu, Z. G., Tong, W., Curtis, G. H., 1987. Times of Volcanic Activity and Origin of Magma in Tengchong Geothermal Area, West Yunnan Province. Chinese Journal of Geophysics, 30(3): 261-270 (in Chinese with English abstract).
|
Nigro, A., Sappa, G., Barbieri, M., 2018. Boron Isotopes and Rare Earth Elements in the Groundwater of a Landfill Site. Journal of Geochemical Exploration, 190: 200-206. https://doi.org/10.1016/j.gexplo.2018.02.019
|
Oi, T., Ikeda, K., Nakano, M., et al., 1996. Boron Isotope Geochemistry of Hot Spring Waters in Ibusuki and Adjacent Areas, Kagoshima, Japan. Geochemical Journal, 30(5): 273-287. https://doi.org/10.2343/geochemj.30.273
|
Oi, T., Nomura, M., Musashi, M., et al., 1989. Boron Isotopic Compositions of Some Boron Minerals. Geochimica et Cosmochimica Acta, 53(12): 3189-3195. https://doi.org/10.1016/0016-7037(89)90099-9
|
Pagani, M., Lemarchand, D., Spivack, A., et al., 2005. A Critical Evaluation of the Boron Isotope-pH Proxy: The Accuracy of Ancient Ocean pH Estimates. Geochimica et Cosmochimica Acta, 69(4): 953-961. https://doi.org/10.1016/j.gca.2004.07.029
|
Palmer, M. R., Spivack, A. J., Edmond, J. M., 1987. Temperature and pH Controls over Isotopic Fractionation during Adsorption of Boron on Marine Clay. Geochimica et Cosmochimica Acta, 51(9): 2319-2323. https://doi.org/10.1016/0016-7037(87)90285-7
|
Palmer, M. R., Sturchio, N. C., 1990. The Boron Isotope Systematics of the Yellowstone National Park (Wyoming) Hydrothermal System: A Reconnaissance. Geochimica et Cosmochimica Acta, 54(10): 2811-2815. https://doi.org/10.1016/0016-7037(90)90015-D
|
Pearson, P. N., Foster, G. L., Wade, B. S., 2009. Atmospheric Carbon Dioxide through the Eocene-Oligocene Climate Transition. Nature, 461(7267): 1110-1113. https://doi.org/10.1038/nature08447
|
Pennisi, M., Gonfiantini, R., Grassi, S., et al., 2006. The Utilization of Boron and Strontium Isotopes for the Assessment of Boron Contamination of the Cecina River Alluvial Aquifer (Central-Western Tuscany, Italy). Applied Geochemistry, 21(4): 643-655. https://doi.org/10.1016/j.apgeochem.2005.11.005
|
Planer-Friedrich, B., Franke, D., Merkel, B., et al., 2008. Acute Toxicity of Thioarsenates to Vibrio Fischeri. Environmental Toxicology and Chemistry, 27(10): 2027-2035. https://doi.org/10.1897/07-633.1
|
Purnomo, B. J., Pichler, T., You, C. F., 2016. Boron Isotope Variations in Geothermal Systems on Java, Indonesia. Journal of Volcanology and Geothermal Research, 311: 1-8. https://doi.org/10.1016/j.jvolgeores.2015.12.014
|
Qing, D. L., Ma, H. Z., Li, B. K., 2012. Boron Concentration and Isotopic Fractionation Research in BangkogCo Intercrystal Brine Evaporation Process. Journal of Salt Lake Research, 20(3): 15-20 (in Chinese with English abstract).
|
Ren, F. H., Zeng, J. H., Liu, W. S., et al., 1996. Hydrogeochemical Environment of High Fluorine Groundwater and the Relation between the Speciation of Fluorine and the Diseased Ratio of Endemic Fluorosis─A Case Study of the North China Plain. Acta Geoscientia Sinica, 17(1): 85-97 (in Chinese with English abstract).
|
Ruiz-Agudo, E., Putnis, C. V., Kowacz, M., et al., 2012. Boron Incorporation into Calcite during Growth: Implications for the Use of Boron in Carbonates as a pH Proxy. Earth and Planetary Science Letters, 345-348: 9-17. https://doi.org/10.1016/j.epsl.2012.06.032
|
Sanyal, A., Nugent, M., Reeder, R. J., et al., 2000. Seawater pH Control on the Boron Isotopic Composition of Calcite: Evidence from Inorganic Calcite Precipitation Experiments. Geochimica et Cosmochimica Acta, 64(9): 1551-1555. https://doi.org/10.1016/S0016-7037(99)00437-8
|
Schmidt, C., Thomas, R., Heinrich, W., 2005. Boron Speciation in Aqueous Fluids at 22 to 600℃ and 0.1 MPa to 2 GPa. Geochimica et Cosmochimica Acta, 69(2): 275-281. https://doi.org/10.1016/j.gca.2004.06.018
|
Shangguan, Z. G., Bai, C. H., Sun, M. L., 2000. Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China. Science in China (Series D), 30(4): 407-414 (in Chinese).
|
Sofyan, Y., Daud, Y., Nishijima, J., et al., 2015. The First Repeated Absolute Gravity Measurement for Geothermal Monitoring in the Kamojang Geothermal Field, Indonesia. Geothermics, 53: 114-124. https://doi.org/10.1016/j.geothermics.2014.05.002
|
Song, Y. Y., Wang, X. K., Zhu, L., et al., 2014. Study on Influence of Temperature and pH on Existing Forms of Polyborate Anions in Water Solution. Inorganic Chemicals Industry, 46(7): 39-42 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4990.2014.07.011
|
Song, Z., Li, H. M., Li, L. X., et al., 2021. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 32(1): 219-234. https://doi.org/10.1007/s12583-020-1060-0
|
Spivack, A. J., Berndt, M. E., Seyfried, W. E., 1990. Boron Isotope Fractionation during Supercritical Phase Separation. Geochimica et Cosmochimica Acta, 54(8): 2337-2339. https://doi.org/10.1016/0016-7037(90)90060-X
|
Spivack, A. J., Edmond, J. M., 1986. Determination of Boron Isotope Ratios by Thermal Ionization Mass Spectrometry of the Dicesium Metaborate Cation. Analytical Chemistry, 58(1): 31-35. https://doi.org/10.1021/ac00292a010
|
Spivack, A. J., Edmond, J. M., 1987. Boron Isotope Exchange between Seawater and the Oceanic Crust. Geochimica et Cosmochimica Acta, 51(5): 1033-1043. https://doi.org/10.1016/0016-7037(87)90198-0
|
Spivack, A. J., Palmer, M. R., Edmond, J. M., 1987. The Sedimentary Cycle of the Boron Isotopes. Geochimica et Cosmochimica Acta, 51(7): 1939-1949. https://doi.org/10.1016/0016-7037(87)90183-9
|
Su, Z. K., Zhao, X. F., Li, X. C., et al., 2016. Using Elemental and Boron Isotopic Compositions of Tourmaline to Trace Fluid Evolutions of IOCG Systems: The Worldclass Dahongshan Fe-Cu Deposit in SW China. Chemical Geology, 441: 265-279. https://doi.org/10.1016/j.chemgeo.2016.08.030
|
Swihart, G. H., Moore, P. B., Callis, E. L., 1986. Boron Isotopic Composition of Marine and Nonmarine Evaporite Borates. Geochimica et Cosmochimica Acta, 50(6): 1297-1301. https://doi.org/10.1016/0016-7037(86)90413-8
|
Tabelin, C. B., Hashimoto, A., Igarashi, T., et al., 2014. Leaching of Boron, Arsenic and Selenium from Sedimentary Rocks: I. Effects of Contact Time, Mixing Speed and Liquid-to-Solid Ratio. The Science of the Total Environment, 472: 620-629. https://doi.org/10.1016/j.scitotenv.2013.11.006
|
Tong, W., Liao, Z. J., Liu, S. B., et al., 2000. Wenquanzhi of Tibet. Science Press, Beijing (in Chinese).
|
Trotter, J., Montagna, P., Mcculloch, M., et al., 2011. Quantifying the pH 'Vital Effect' in the Temperate Zooxanthellate Coral Cladocora Caespitosa: Validation of the Boron Seawater pH Proxy. Earth and Planetary Science Letters, 303(3-4): 163-173. https://doi.org/10.1016/j.epsl.2011.01.030
|
Türker, O. C., Vymazal, J., Türe, C., 2014. Constructed Wetlands for Boron Removal: A Review. Ecological Engineering, 64: 350-359. https://doi.org/10.1016/j.ecoleng.2014.01.007
|
Vengosh, A., Helvacı, C., Karamanderesi, İ. H., 2002. Geochemical Constraints for the Origin of Thermal Waters from Western Turkey. Applied Geochemistry, 17(3): 163-183. https://doi.org/10.1016/S0883-2927(01)00062-2
|
Vengosh, A., Starinsky, A., Kolodny, Y., et al., 1991. Boron Isotope Geochemistry as a Tracer for the Evolution of Brines and Associated Hot Springs from the Dead Sea, Israel. Geochimica et Cosmochimica Acta, 55(6): 1689-1695. https://doi.org/10.1016/0016-7037(91)90139-V
|
Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract).
|
Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
|
Wei, H. Z., Jiang, S. Y., Tan, H. B., et al., 2014. Boron Isotope Geochemistry of Salt Sediments from the Dongtai Salt Lake in Qaidam Basin: Boron Budget and Sources. Chemical Geology, 380: 74-83. https://doi.org/10.1016/j.chemgeo.2014.04.026
|
World Health Organization, 2008. Guidelines for Dringking-Water Quality, 3rd Ed., World Health Organization, Geneva.
|
Wu, S. F., You, C. F., Lin, Y. P., et al., 2016. New Boron Isotopic Evidence for Sedimentary and Magmatic Fluid Influence in the Shallow Hydrothermal Vent System of Milos Island (Aegean Sea, Greece). Journal of Volcanology and Geothermal Research, 310: 58-71. https://doi.org/10.1016/j.jvolgeores.2015.11.013
|
Xiao, J., Xiao, Y. K., Liu, C. Q., et al., 2012. The Incorporation Species and Mechanism of Boron into Mg(OH)2. Earth Science Frontiers, 19(4): 173-182 (in Chinese with English abstract).
|
Xiao, Y. K., Beary, E. S., Fassett, J. D., 1988. An Improved Method for the High-Precision Isotopic Measurement of Boron by Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 85(2): 203-213. https://doi.org/10.1016/0168-1176(88)83016-7
|
Xiao, Y. K., Li, H. L., Liu, W. G., et al., 2008. Boron Isotopic Fractionation in Laboratory Inorganic Carbonate Precipitation: Evidence for the Incorpora-Tion of B(OH)3 into Carbonate. Science in China (Series D), 38(10): 1309-1317 (in Chinese). doi: 10.3321/j.issn:1006-9267.2008.10.013
|
Xiao, Y. K., Li, S. Z., Wei, H. Z., et al., 2006. An Unusual Isotopic Fractionation of Boron in Synthetic Calcium Carbonate Precipitated from Seawater and Saline Water. Science in China (Series B), 36(3): 263-272 (in Chinese).
|
Yamaoka, K., Hong, E., Ishikawa, T., et al., 2015. Boron Isotope Geochemistry of Vent Fluids from Arc/Back-Arc Seafloor Hydrothermal Systems in the Western Pacific. Chemical Geology, 392: 9-18. https://doi.org/10.1016/j.chemgeo.2014.11.009
|
Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027
|
Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1/2): 99-107. https://doi.org/10.1016/S0377-0273(98)00108-5
|
Yuan, J. F., Guo, Q. H., Wang, Y. X., 2014. Geochemical Behaviors of Boron and Its Isotopes in Aqueous Environment of the Yangbajing and Yangyi Geothermal Fields, Tibet, China. Journal of Geochemical Exploration, 140: 11-22. https://doi.org/10.1016/j.gexplo.2014.01.006
|
Yuan, X. H., Ni, J., Kind, R., et al., 1997. Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment. Journal of Geophysical Research: Solid Earth, 102(B12): 27491-27500. https://doi.org/10.1029/97jb02379
|
Zhang, A. Y., Yao, Y., 2007. The Polyborate Present in Aqueous Solutions Containing Boron and the Affection Factors. Journal of Salt Lake Research, 15(2): 50-56 (in Chinese with English abstract).
|
Zhang, L. J., Ye, X. C., 2008. The Existing Forms and Influencing Factors of the Polyborate Anions in Aqueous Solution. Norganic Chemicals Ndustry, 40(2): 4-8 (in Chinese with English abstract).
|
Zhang, Q., Tan, H. B., Qu, T., et al., 2014. Impacts of Typical Harmful Elements in Geothermal Water on River Water Quality in Tibet. Water Resources Protection, 30(4): 23-29, 77 (in Chinese with English abstract).
|
Zhang, Q., Tan, H. B., Zhang, W. J., et al., 2015. Water Environmental Effects of Kawu Geothermal Water in Sajia County, Tibet. Water Resources Protection, 31(2): 45-49, 54 (in Chinese with English abstract).
|
Zhang, W. J., Tan, H. B., Zhang, Y. F., et al., 2015. Boron Geochemistry from Some Typical Tibetan Hydrothermal Systems: Origin and Isotopic Fractionation. Applied Geochemistry, 63: 436-445. https://doi.org/10.1016/j.apgeochem.2015.10.006
|
Zhang, Z. F., Zhu, M. X., Liu, S. B., et al., 1982. Preliminary Studies of Hydrothermal Geochemistry of Xizang. Acta Scicentiarum Naturalum Universitis Pekinesis, 18(3): 88-96 (in Chinese with English abstract).
|
Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4): 977-989. https://doi.org/10.1016/j.jseaes.2010.03.010
|
Zhao, R. S., Shan, X. L., Wu, C. Z., et al., 2019. Formation and Evolution of the Changbaishan Volcanic Geothermal System in a Convergent Plate Boundary Back-Arc Region Constrained by Boron Isotope and Gas Data. Journal of Hydrology, 569: 188-202. https://doi.org/10.1016/j.jhydrol.2018.11.040
|
Zhao, W., Mechie, J., Brown, L. D., et al., 2001. Crustal Structure of Central Tibet as Derived from Project INDEPTH Wide-Angle Seismic Data. Geophysical Journal International, 145(2): 486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x
|
Zheng, M. P., Xiang, J., Wei, X. J., 1989. Qinghai Tibet Plateau Salt Lake. Science and Technology Press, Beijing (in Chinese).
|
Zhou, Y. Q., 2014. Proprieties, Structure and Electrochemical Reduction of Aqueous Sodium Metaborate Borate Solution (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xi'ning (in Chinese with English abstract).
|
Zhu, B. Q., Mao, C. X., 1983. Nd-Sr Isotope and Trace Element Study on Tengchong Volcanic Rocks from the Indo-Eurasian Collisional Margin. Geochimica, 12(1): 1-14 (in Chinese with English abstract).
|
Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain- Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract).
|
白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
|
郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544-3554. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202012002.htm
|
郭清海, 2022. 地热系统来源有害组分的环境效应及其处理. 地质学报, 96(5): 1767-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205016.htm
|
郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
|
侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束. 地质学报, 78(4): 482-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200404006.htm
|
廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
|
刘明亮, 2018. 西藏典型高温水热系统中硼的地球化学研究(博士学位论文). 武汉: 中国地质大学.
|
刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
|
吕苑苑, 许荣华, 赵平, 等, 2008. 利用MC-ICPMS对水样中硼同位素比值的测定. 地球化学, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm
|
吕苑苑, 郑绵平, 赵平, 等, 2014. 滇藏地热带地热水硼同位素地球化学过程及其物源示踪. 中国科学(D辑), 44(9): 1968-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409009.htm
|
穆治国, 佟伟, Curtis, G. H., 1987. 腾冲火山活动的时代和岩浆来源问题. 地球物理学报, 30(3): 261-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198703004.htm
|
卿德林, 马海州, 李斌凯, 2012. 班戈错Ⅱ湖晶间卤水蒸发硼浓度及硼同位素分馏研究. 盐湖研究, 20(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201203005.htm
|
任福弘, 曾溅辉, 刘文生, 等, 1996. 高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系──以华北平原为例. 地球学报, 17(1): 85-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB601.008.htm
|
上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), 30(4): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm
|
宋月月, 王学魁, 朱亮, 等, 2014. 温度和pH对硼在水溶液中聚合形式影响的研究. 无机盐工业, 46(7): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407011.htm
|
佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志. 北京: 科学出版社.
|
王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
|
汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
|
肖军, 肖应凯, 刘丛强, 等, 2012. 硼掺入Mg(OH)2形式及机理. 地学前缘, 19(4): 173-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204020.htm
|
肖应凯, 李华玲, 刘卫国, 等, 2008. 无机碳酸盐沉积的硼同位素分馏: B(OH)3掺入碳酸盐的证据. 中国科学(D辑), 38(10): 1309-1317. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810014.htm
|
肖应凯, 李世珍, 魏海珍, 等, 2006. 从海/咸水中沉积碳酸钙时异常的硼同位素分馏. 中国科学(B辑), 36(3): 263-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200603011.htm
|
张爱芸, 姚燕, 2007. 硼酸盐水溶液中硼物种的存在形式及影响因素. 盐湖研究, 15(2): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200702010.htm
|
张林进, 叶旭初, 2008. 水溶液中硼氧配阴离子的存在形式及影响因素. 无机盐工业, 40(2): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200802003.htm
|
张庆, 谭红兵, 渠涛, 等, 2014. 西藏地热水中典型有害元素对河流水质的影响. 水资源保护, 30(4): 23-29, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201404007.htm
|
张庆, 谭红兵, 张文杰, 等, 2015. 西藏萨迦县卡乌地热水的水环境效应. 水资源保护, 31(2): 45-49, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201502009.htm
|
张知非, 朱梅湘, 刘时彬, 等, 1982. 西藏水热地球化学的初步研究. 北京大学学报(自然科学版), 18(3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm
|
郑绵平, 向军, 魏新俊, 1989. 青藏高原盐湖. 北京: 科学技术出版社.
|
周永全, 2014. 偏硼酸钠溶液性质、结构及电化学还原(博士学位论文). 西宁: 中国科学院青海盐湖研究所.
|
朱炳泉, 毛存孝, 1983. 印度与欧亚板块东部碰撞边界: 腾冲火山岩的Nd-Sr同位素与微量元素研究. 地球化学, 12(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198301000.htm
|
朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
|