• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Zhan Jiang, Li Zhiping, Zhao Guizhang, Wang Lin, Yuan Qiaoling, 2024. Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR. Earth Science, 49(3): 978-991. doi: 10.3799/dqkx.2022.242
    Citation: Zhan Jiang, Li Zhiping, Zhao Guizhang, Wang Lin, Yuan Qiaoling, 2024. Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR. Earth Science, 49(3): 978-991. doi: 10.3799/dqkx.2022.242

    Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR

    doi: 10.3799/dqkx.2022.242
    • Received Date: 2022-01-28
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Saturated hydraulic conductivity is a significant soil hydraulic parameter, which plays an important role in the research of seepage and solute transport. Pdeo-Transfer Functions (PTFs) can indirectly predict this parameter instead of large-scale sampling and indoor and outdoor tests. However, due to the spatial variability of soils and the limitations of methods, previous predictions of PTFs are not accurate enough. This study takes different soil layers in the vadose zone of Yanlou Township, Lankao County, the lower reaches of the Yellow River as the research object. Based on 64 borehole data, nine basic physicochemical properties such as soil particle size distribution (clay, silt and sand content), soil structure fractal dimension, dry bulk density, total porosity, pH value, organic matter and electrical conductivity are considered as the influencing factors of the PTFs. Based on Stepwise Regression, Principal Component Regression and Principal Component Analysis-Geographically Weighted Regression (PCA-GWR), the saturated hydraulic conductivity of different soil layers is regressed separately. After comparison of precision, Geographically Weighted Regression Kriging is carried out for saturated hydraulic conductivity based on PCA-GWR. The results reveal that the prediction accuracy of PCA-GWR method has significant advantages except for the surface silt. The difference of the distribution of saturated hydraulic conductivity and PTFs in different soil layers shows that, due to the rapid and changeable sedimentation process in the lower reaches of the Yellow River, the breach and diversion of the Yellow River and human activities, the phase change of soil layer in the vadose zone is intense, and the saturated hydraulic conductivity also has obvious non-stationary characteristics in the plane. The local geological process and human activities are the deep reasons for the poor regression Kriging estimation results of the second layer of silt.

       

    • loading
    • Cosby, B. J., Hornberger, G. M., Clapp, R. B., et al., 1984. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resources Research, 20(6): 682-690. https://doi.org/10.1029/WR020i006p00682
      Fang, L. J., Gao, R. Z., Liu, T. X., et al., 2020. Construction and Evaluation of Pedo-Transfer Functions in the Balager River Basin. Arid Zone Research, 37(5): 1156-1165 (in Chinese with English abstract).
      Fotheringham, A. S., Charlton, M., Brunsdon, C., 1996. The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity. International Journal of Geographical Information Systems, 10(5): 605-627. https://doi.org/10.1080/02693799608902100
      Gao, P. F., Ran, Z. L., Han, Z., et al., 2021. Hydraulic Properties and Saturated Hydraulic Conductivity Pedo-Transfer Function of Rocky Purple Soil. Acta Pedologica Sinica, 58(1): 128-139 (in Chinese with English abstract).
      Ge, Q., Liang, X., Gong, X. L., et al., 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits: A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803 (in Chinese with English abstract).
      Huang, M. B., Fredlund, D. G., Fredlund, M. D., 2010. Comparison of Measured and PTF Predictions of SWCCs for Loess Soils in China. Geotechnical and Geological Engineering, 28(2): 105-117. https://doi.org/10.1007/s10706-009-9284-x
      Huang, W. X., Deng, Y. S., Xie, F. Q., et al., 2020. Characteristics of Soil Saturated Hydraulic Conductivity on Different Positions and Their Controlling Factors of Granite Collapsing Gullies. Chinese Journal of Applied Ecology, 31(7): 2431-2440 (in Chinese with English abstract).
      Julià, M. F., Monreal, T. E., Jiménez, A. S. D. C., et al., 2004. Constructing a Saturated Hydraulic Conductivity Map of Spain Using Pedotransfer Functions and Spatial Prediction. Geoderma, 123(3-4): 257-277. https://doi.org/10.1016/j.geoderma.2004.02.011
      Kumar, S., Lai, R., Liu, D. S., 2012. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma, 189-190: 627-634. https://doi.org/10.1016/j.geoderma.2012.05.022
      Li, H. X., Liu, J. L., Zhu, A. N., et al., 2010. Comparison Study of Soil Pedo-Transfer Functions in Estimating Saturated Soil Hydraulic Conductivity at Tianranwenyanqu Basin. Soils, 42(3): 438-445 (in Chinese with English abstract).
      Li, X. D., Shao, M. A., Zhao, C. L., 2019. Spatial Variability and Simulation of Soil Hydraulic Parameters in Arid Northwest China. Arid Zone Research, 36(6): 1325-1332 (in Chinese with English abstract)
      Li, Y., Chen, D., White, R. E., et al., 2007. Estimating Soil Hydraulic Properties of Fengqiu County Soils in the North China Plain Using Pedo-Transfer Functions. Geoderma, 138(3-4): 261-271. https://doi.org/10.1016/j.geoderma.2006.11.018
      Liao, K. H., Xu, S. H., Wu, J. C., et al., 2012. A Method Based on Principal Component Analysis and Artificial Neural Network for Estimating Soil Hydraulic Properties. Journal of Hydraulic Engineering, 43(3): 333-338 (in Chinese with English abstract).
      Liu, K., Huang, G. H., 2019. Joint State and Parameter Estimation of Two-Dimensional Soil Water Flow Model Based on Ensemble Kalman Filter Method. Journal of Hydraulic Engineering, 50(3): 399-408 (in Chinese with English abstract).
      Liu, Z. X., Shu, Q. S., Wang, Z. Y., 2007. Applying Pedo-Transfer Functions to Simulate Spatial Heterogeneity of Cinnamon Soil Water Retention Characteristics in Western Liaoning Province. Water Resources Management, 21(10): 1751-1762. https://doi.org/10.1007/s11269-006-9125-0
      Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682 (in Chinese with English abstract).
      Luo, Y. W., Ren, Z. P., Ge, Y., et al., 2020. Analysis on Spatio-Temporal Patterns and Drivers of Poverty at Village Level Based on PCA-GWR. Journal of Geo-Information Science, 22(2): 231-245 (in Chinese with English abstract).
      Ma, Y. F., Li, S. Q., Pan, X. H., 2015. A Review on Development of the Yellow River Alluvial Fan. Acta Geographica Sinica, 70(1): 49-62 (in Chinese with English abstract).
      Qiao, J. B., 2019. Study On The Soil Physical Properties of The Deep Profile of the Critical Zone of the China's Loess Plateau and Their Pedotransfer Functions (Dissertation). Northwest A&F University, Yangling (in Chinese with English abstract).
      Qu, M. K., Li, W. D., Zhang, C. R., et al., 2014. Geographically Weighted Regression and Its Application Prospect in Soil and Environmental Sciences. Soils, 46(1): 15-22 (in Chinese with English abstract).
      Rawls, W. J., Gish, T. J., Brakensiek, D. L., 1991. Estimating Soil Water Retention from Soil Physical Properties and Characteristics. In: Stewart, B. A., ed., Advances in Soil Science. Springer, New York, 213-234. https://doi.org/10.1007/978-1-4612-3144-8_5
      Saxton, K. E., Rawls, W. J., Romberger, J. S., et al., 1986. Estimating Generalized Soil-Water Characteristics from Texture. Soil Science Society of America Journal, 50(4): 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
      Sun, L., Liu, T. X., Duan, L. M., et al., 2015. Prediction of Saturated Hydraulic Conductivity of Surface Soil in sand-Dune-and-Meadow Interlaced Region of Horqin with pedo-Transfer Functions Method. Acta Pedologica Sinica, 52(1): 68-76 (in Chinese with English abstract).
      Sun, M., Zhang, X. L., Feng, S. Y., et al., 2014. Pedo-Transfer Function for Saturated Hydraulic Conductivity of Agricultural Soil Based on Cross-Validation. Transactions of the Chinese Society for Agricultural Machinery, 45(10): 147-152 (in Chinese with English abstract).
      Vereecken, H., Maes, J., Feyen, J., 1990. Estimating Unsaturated Hydraulic Conductivity from Easily Measured Soil Properties. Soil Science, 149(1): 1-12. https://doi.org/10.1097/00010694-199001000-00001
      Wang, G. L., Zhou, S. L., Zhao, Q. G., 2005. Volume Fractal Dimension of Soil Particles and Its Applications to Land Use. Acta Pedologica Sinica, 42(4): 545-550 (in Chinese with English abstract).
      Wang, H. M., Ni, W. K., 2022. Prediction Model of Saturated/Unsaturated Permeability Coefficient of Compacted Loess with Different Dry Densities. Rock and Soil Mechanics, 43(3): 729-736 (in Chinese with English abstract).
      Wang, Z. L., Zhao, Y. G., Zhao, S. W., et al., 2016. Study on Soil Saturated Hydraulic Conductivity and Its Influencing Factors in Typical Grassland of Farmland Conversion. Acta Agrestia Sinica, 24(6): 1254-1262 (in Chinese with English abstract).
      Wösten, J. H. M., Lilly, A., Nemes, A., et al., 1999. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma, 90(3-4): 169-185. https://doi.org/10.1016/s0016-7061(98)00132-3
      Yang, S. H., Zhang, H. T., Guo, L., et al., 2015. Spatial Interpolation of Soil Organic Matter Using Regression Kriging and Geographically Weighted Regression Kriging. Chinese Journal of Applied Ecology, 26(6): 1649-1656 (in Chinese with English abstract).
      Yang, Z., Huang, X., She, D. L., 2020. Spatial Distribution Characteristics and Influencing Factors of Soil Saturated Hydraulic Conductivity in the Loess Hilly Region of Northwestern Shanxi. Journal of Soil and Water Conservation, 34(6): 178-184 (in Chinese with English abstract).
      Yao, S. X., Zhao, C. C., Zhang, T. H., 2013. A Comparison of Soil Saturated Hydraulic Conductivity (Kfs) in Different Horqin Sand Land. Acta Pedologica Sinica, 50(3): 469-477 (in Chinese with English abstract).
      Zhang, J., Liang, X., Liu, Y. F., et al., 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhao, C. L., Shao, M. A., Jia, X. X., 2014. Distribution and Simulation of Saturated Soil Hydraulic Conductivity at a Slope of Northern Loess Plateau. Advances in Water Science, 25(6): 806-815 (in Chinese with English abstract).
      Zheng, H., Han, L., Shojaaddini, A., 2021. Predicting Saturated Hydraulic Conductivity by Pedo-Transfer Function and Spatial Methods in Calcareous Soils. Journal of Applied Geophysics, 191: 104367. https://doi.org/10.1016/j.jappgeo.2021.104367
      Zou, G. H., Li, Y., Li, Y. Y., et al., 2013. Developing a Pedo-Transfer Function for Estimating Saturated Soil Hydraulic Conductivity of Paddy Soils of a Catchment in Southern Subtropical China. Chinese Journal of Soil Science, 44(2): 302-307 (in Chinese with English abstract).
      房丽晶, 高瑞忠, 刘廷玺, 等, 2020. 巴拉格尔河流域土壤传递函数构建与评估. 干旱区研究, 37(5): 1156-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202005009.htm
      高鹏飞, 冉卓灵, 韩珍, 等, 2021. 含岩屑紫色土水力特性及饱和导水率传递函数研究. 土壤学报, 58(1): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202101012.htm
      葛勤, 梁杏, 龚绪龙, 等, 2017. 不同饱和黏性土渗透系数预测方法的应用与对比: 以苏北沿海平原黏土为例. 地球科学, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
      黄婉霞, 邓羽松, 谢福倩, 等, 2020. 花岗岩崩岗不同部位土壤饱和导水率特征及其影响因素. 应用生态学报, 31(7): 2431-2440. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202007038.htm
      李慧霞, 刘建立, 朱安宁, 等, 2010. 预测天然文岩渠流域土壤饱和导水率的土壤转换函数方法比较研究. 土壤, 42(3): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201003018.htm
      李祥东, 邵明安, 赵春雷, 2019. 西北干旱区土壤水力参数空间变异与模拟. 干旱区研究, 36(6): 1325-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201906001.htm
      廖凯华, 徐绍辉, 吴吉春, 等, 2012. 一种基于PCA和ANN的土壤水力性质估计方法. 水利学报, 43(3): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201203012.htm
      刘琨, 黄冠华, 2019. 基于集合卡尔曼滤波法的二维土壤水流状态变量和参数联合估计. 水利学报, 50(3): 399-408. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903013.htm
      刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
      罗耀文, 任周鹏, 葛咏, 等, 2020. 基于PCA-GWR方法的村级贫困时空格局及致贫因素分析. 地球信息科学学报, 22(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202002009.htm
      马玉凤, 李双权, 潘星慧, 2015. 黄河冲积扇发育研究述评. 地理学报, 70(1): 49-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501005.htm
      乔江波, 2019. 黄土高原关键带深剖面土壤物理性质及传递函数研究(博士学位论文). 杨凌: 西北农林科技大学.
      瞿明凯, 李卫东, 张传荣, 等, 2014. 地理加权回归及其在土壤和环境科学上的应用前景. 土壤, 46(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401003.htm
      孙丽, 刘廷玺, 段利民, 等, 2015. 科尔沁沙丘‒草甸相间地区表土饱和导水率的土壤传递函数研究. 土壤学报, 52(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201501008.htm
      孙美, 张晓琳, 冯绍元, 等, 2014. 基于交叉验证的农田土壤饱和导水率传递函数研究. 农业机械学报, 45(10): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201410023.htm
      王国梁, 周生路, 赵其国, 2005. 土壤颗粒的体积分形维数及其在土地利用中的应用. 土壤学报, 42(4): 545-550. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200504002.htm
      王海曼, 倪万魁, 2022. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学, 43(3): 729-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203016.htm
      王子龙, 赵勇钢, 赵世伟, 等, 2016. 退耕典型草地土壤饱和导水率及其影响因素研究. 草地学报, 24(6): 1254-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201606015.htm
      杨顺华, 张海涛, 郭龙, 等, 2015. 基于回归和地理加权回归Kriging的土壤有机质空间插值. 应用生态学报, 26(6): 1649-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201506007.htm
      杨震, 黄萱, 佘冬立, 2020. 晋西北黄土丘陵区土壤饱和导水率的空间分布特征及影响因素. 水土保持学报, 34(6): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006026.htm
      姚淑霞, 赵传成, 张铜会, 2013. 科尔沁不同沙地土壤饱和导水率比较研究. 土壤学报, 50(3): 469-477. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201303006.htm
      张洁, 梁杏, 刘延锋, 等, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      赵春雷, 邵明安, 贾小旭, 2014. 黄土高原北部坡面尺度土壤饱和导水率分布与模拟. 水科学进展, 25(6): 806-815. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201406007.htm
      邹刚华, 李勇, 李裕元, 等, 2013. 亚热带小流域稻田土壤饱和导水率传递函数构建. 土壤通报, 44(2): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(9)

      Article views (466) PDF downloads(21) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return