• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Ni Huaiwei, Wang Qingxia, Wang Chunguang, Zhang Yanfei, 2022. Experimental Petrology: Status Quo and Prospect. Earth Science, 47(8): 2691-2700. doi: 10.3799/dqkx.2022.259
    Citation: Ni Huaiwei, Wang Qingxia, Wang Chunguang, Zhang Yanfei, 2022. Experimental Petrology: Status Quo and Prospect. Earth Science, 47(8): 2691-2700. doi: 10.3799/dqkx.2022.259

    Experimental Petrology: Status Quo and Prospect

    doi: 10.3799/dqkx.2022.259
    • Received Date: 2021-12-08
    • Publish Date: 2022-09-25
    • Through simulating the high pressure and high temperature conditions in Earth's interior, experimental petrology investigates the physicochemical behavior of minerals, rocks and the components they contain, which complements "inverse problem" study using natural samples. Since the foundation of the Geophysical Laboratory of the Carnegie institution in the early 20th century, the development of experimental petrology has been taking place for more than 100 years. Experimental petrology has played a crucial role in advancing our knowledge about the conditions and processes in Earth's interior and the genesis of minerals and rocks. In China, experimental petrology has developed for more than five decades, and significant progress has been made in the 21th century with respect to laboratory building and scientific research. We highlight the following characteristics in the development of experimental petrology as a discipline: (1) emergence of novel high temperature and high pressure experimental techniques; (2) integration of experimental and analytical techniques; (3) combination of experimental simulation and computational simulation; (4) expansion from thermodynamic equilibrium to kinetics; (5) expansion from dry systems to volatiles-bearing systems including fluids; (6) expansion from the Earth to other terrestrial planets. Through further development in experimental techniques and more intimate combination with analytical and computational methods, experimental petrology is expected to make important contributions in resolving important scientific problems, such as the properties and effects of geofluids, mantle evolution and magma differentiation, rates and mechanisms of metamorphic reactions, and the formation and evolution of terrestrial planets.

       

    • loading
    • Ardia, P., Giordano, D., Schmidt, M. W, 2008. A Model for the Viscosity of Rhyolite as a Function of H2O‐Content and Pressure: a Calibration Based on Centrifuge Piston Cylinder Experiments. Geochimica et Cosmochimica Acta, 72(24): 6103-6123. https://doi.org/10.1016/j.gca.2008.08.025
      Bassett, W. A., Shen, A. H., Bucknum, M., et al., 1993. A New Diamond Anvil Cell for Hydrothermal Studies to 2.5 GPa and from -190 to 1 200 ℃. Review of Scientific Instruments, 64(8): 2340-2345. https://doi.org/10.1063/1.1143931
      Belonoshko, A. B., Saxena, S. K, 1992. A Unified Equation of State for Fluids of C‐H‐O‐N‐S‐Ar Composition and Their Mixtures up to very High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 56(10): 3611-3626. https://doi.org/10.1016/0016‐7037(92)90157‐E
      Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton.
      Boyd, F. R., England, J. L, 1960. Apparatus for Phase‐Equilibrium Measurements at Pressures up to 50 Kilobars and Temperatures up to 1 750 ℃. Journal of Geophysical Research, 65(2): 741-748. https://doi.org/10.1029/jz065i002p00741
      Cashman, K. V., Sparks, R. S. J., Blundy, J. D, 2017. Vertically Extensive and Unstable Magmatic Systems: a Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
      Chen, W., Xiong, X. L., Wang, J. T., et al., 2018. TiO2 Solubility and Nb and Ta Partitioning in Rutile‐Silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123(6): 4765-4782.
      Costa, F., 2021. Clocks in Magmatic Rocks. Annual Review of Earth and Planetary Sciences, 49: 231-252. https://doi.org/10.1146/annurev‐earth‐080320‐060708
      Duan, Z. H., Zhang, Z. G., 2006. Equation of State of the H2O, CO2, and H2O‐CO2 Systems up to 10 GPa and 2 573.15 K: Molecular Dynamics Simulations with Ab Initio Potential Surface. Geochimica et Cosmochimica Acta, 70(9): 2311-2324. https://doi.org/10.1016/j.gca.2006.02.009
      Fichtner, C. E., Schmidt, M. W., Liebske, C., et al., 2021. Carbon Partitioning between Metal and Silicate Melts during Earth Accretion. Earth and Planetary Science Letters, 554: 116659. https://doi.org/10.1016/j.epsl.2020.116659
      Forman, R. A., Piermarini, G. J., Barnett, J. D., et al., 1972. Pressure Measurement Made by the Utilization of Ruby Sharp‐Line Luminescence. Science, 176(4032): 284-285. https://doi.org/10.1126/science.176.4032.284
      Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. a Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid‐Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197-212. https://doi.org/10.1007/BF00307281
      Green, D. H., Hibberson, W. O., Rosenthal, A., et al., 2014. Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle. Journal of Petrology, 55(10): 2067-2096. https://doi.org/10.1093/petrology/egu050
      Green, D.H., 1973. Experimental Melting Studies on a Model Upper Mantle Composition at High‐Pressure under Water‐Saturated and Water‐Undersaturated Conditions. Earth and Planetary Science Letters, . 19: 37-53. https://doi.org/10.1016/0012‐821X(73)90091‐5
      Green, D.H., Hibberson, W.O., Kovacs, I., Rosenthal, A., 2010. Water and Its Influence on the Lithosphere‐Asthenosphere Boundary. Nature, 467(7314): 448-451. https://doi.org/10.1038/nature09369
      Grove, T., Till, C., Krawczynski, M., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and, 40(1): 413-439. doi: 10.1146/annurev‐earth‐042711‐105310
      Grove, T.L., Chatterjee, N., Parman, S.W., Medard, E., 2006. The Influence of H2O on Mantle Wedge Melting. Earth and Planetary Science Letters, . 249(1): 74-89. https://doi.org/10.1016/j.epsl.2006.06.043
      Guo, X., Zhang, L., Behrens, H., et al., 2016. Probing the Status of Felsic Magma Reservoirs: Constraints from the PT‐H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth and Planetary Science Letters, 433: 54-62. https://doi.org/10.1016/j.epsl.2015.10.036
      Holland, T. J. B., Powell, R., 1990. An Enlarged and Updated Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: The System K2O‐Na2O‐CaO‐MgO‐MnO‐FeO‐Fe2O3‐Al2O3‐TiO2‐SiO2‐C‐H2‐O2. Journal of Metamorphic Geology, 8(1): 89-124.
      Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525‐1314.2010.00923.x
      Jamtveit, B., 2010. Metamorphism: From Patterns to Processes. Elements, 6(3): 149-152. https://doi.org/10.2113/gselements.6.3.149
      Jiang, D. W., Gao, Y., Cao, M., et al., 2021. Diamond Anvil Cell with Double Coaxial Chambers. Review of Scientific Instruments, 92(12): 123901. https://doi.org/10.1063/5.0063573
      Karki, B. B., 2015. First‐Principles Computation of Mantle Materials in Crystalline and Amorphous Phases. Physics of the Earth and Planetary Interiors, 240: 43-69. https://doi.org/10.1016/j.pepi.2014.11.004
      Kawai, N., 1966. A Static High Pressure Apparatus with Tapering Multi‐Pistons Forming a Sphere. I. Proceedings of the Japan Academy, 42(4): 385-388. https://doi.org/10.2183/pjab1945.42.385
      Kawamoto, T., Holloway,J.R., 1997. Melting Temperature and Partial Melt Chemistry of H2O‐Saturated Mantle Peridotite to 11 Gigapascals. Science, 276(5310): 240-243. https://doi.org/10.1126/science.276.5310.240
      Kirkpatrick, R.J., 1975. Crystal Growth from the Melt: a Review. American Mineralogist, 60: 798-814.
      Kushiro, I., Syono, Y., Akimoto, S., 1968. Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Journal of Geophysical Research, 73(18): 6023-6029. https://doi.org/10.1029/JB073i018p06023
      Li, J. K., Bassett, W. A., Chou, I. M., et al., 2016. An Improved Hydrothermal Diamond Anvil Cell. Review of Scientific Instruments, 87(5): 053108. https://doi.org/10.1063/1.4947506
      Liu, L. P., Hu, X. M., Liu, X., 2018. MgO Partition between Olivine and K2O‐Rich Silicate Melt: Geothermometers Applicable to High Potassium Magmas. Journal of Asian Earth Sciences, 166: 181-194. https://doi.org/10.1016/j.jseaes.2018.07.036
      Liu, X., Zhang, L. F., Alistair, H., et al., 2009. Effect of Water on the Partial Melting Process of some Silicate Systems: Important Implication of the Second Critical Endpoint. Acta Petrologica Sinica, 25(12): 3407-3421(in Chinese with English abstract).
      Luth, W.C., Tuttle, O.F., 1963. Externally Heated Cold‐Seal Pressure Vessels for Use to 10 000 Bars and 750℃. American Mineralogist, 48: 1401-1403.
      Mibe, K., Kawamoto, T., Matsukage, K. N., et al., 2011. Slab Melting Versus Slab Dehydration in Subduction‐Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8177-8182. https://doi.org/10.1073/pnas.1010968108
      Millhollen, G.L., Irving, A.J., Wyllie, P.J., 1974. Melting Interval of Peridotite with 5.7% Water to 30 Kilobars. The Journal of Geology, 82(5): 575-587. https://doi.org/10.2307/30059149
      Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932
      Mysen, B.O., Boettcher, A.L., 1975. Melting of a Hydrous Mantle: Ⅰ. Phase Relations of Natural Peridotite at High‐Pressures and Temperatures with Controlled Activities of Water, Carbon Dioxide, and Hydrogen. Journal of Petrology, 16(1): 520-548. https://doi.org/10.1093/petrology/16.1.520
      Ni, H. W., 2015. Oxygen Isotope Thermometry, Speedometry, and Hygrometry: Apparent Equilibrium Temperature Versus Closure Temperature. Geochemistry, Geophysics, Geosystems, 16(1): 27-39. https://doi.org/10.1002/2014gc005574
      Ni, H. W., Keppler, H., Walte, N., et al., 2014. In Situ Observation of Crystal Growth in a Basalt Melt and the Development of Crystal Size Distribution in Igneous Rocks. Contributions to Mineralogy and Petrology, 167(5): 1003. https://doi.org/10.1007/s00410‐014‐1003‐9.
      Ni, H. W., Zhang, L., Xiong, X. L., et al., 2017. Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. EarthScience Reviews, 167: 62-71. https://doi.org/10.1016/j.earscirev.2017.02.006
      Ni, H. W., 2020. Properties and Effects of Supercritical Geofluids. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 443-447 (in Chinese with English abstract).
      Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post‐Perovskite Phase of MgSiO3 in Earth Layer. Nature, 430(6998): 445-448. https://doi.org/10.1038/nature02701
      Poe, B. T., McMillan, P. F., Rubie, D. C., et al., 1997. Silicon and Oxygen Self‐Diffusivities in Silicate Liquids Measured to 15 Gigapascals and 2 800 Kelvin. Science, 276(5316): 1245-1248. https://doi.org/10.1126/science.276.5316.1245
      Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. Treatise on Geochemistry. Elsevier, Amsterdam, 669-701. https://doi.org/10.1016/b978‐0‐08‐095975‐7.00321‐1
      Schmidt, M. W., Ulmer, P., 2004. A Rocking Multianvil: Elimination of Chemical Segregation in Fluid‐Saturated High‐Pressure Experiments. Geochimica et Cosmochimica Acta, 68(8): 1889-1899. https://doi.org/10.1016/j.gca.2003.10.031.
      Sekine, T., Wyllie, P. J., 1983. Experimental Simulation of Mantle Hybridization in Subduction Zones. The Journal of Geology, 91(5): 511-528. https://doi.org/10.1086/628802
      Shen, A. H., Keppler, H., 1997. Direct Observation of Complete Miscibility in the Albite‐H2O System. Nature, 385(6618): 710-712. https://doi.org/10.1038/385710a0
      Smith, P.M., Asimow, P.D., 2005. Adiabat_1ph: a New Public Front‐End to the MELTS, pMELTS, and pHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): Q02004. https://doi.org/10.1029/2004GC000816
      Testemale, D., Argoud, R., Geaymond, O., et al., 2005. High Pressure/High Temperature Cell for X‐Ray Absorption and Scattering Techniques. Review of Scientific Instruments, 76(4): 043905. https://doi.org/10.1063/1.1884188
      Till, C.B., Grove, T.L., Withers, A.C., 2011. The Beginnings of Hydrous Mantle Wedge Melting. Contributions to Mineralogy and Petrology, 163: 669-688. https://doi.org/10.1007/s00410‐011‐0692‐6
      Wang, C. G., Liang, Y., Xu, W. L., et al., 2013. Effect of Melt Composition on Basalt and Peridotite Interaction: Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton. Contributions to Mineralogy and Petrology, 166(5): 1469-1488. https://doi.org/10.1007/s00410‐013‐0938‐6
      Wang, Q. X., Zhou, D. Y., Li, W. C., et al., 2021. Spinodal Decomposition of Supercritical Fluid Forms Melt Network in a Silicate‐H2O System. Geochemical Perspectives Letters, 22-26. https://doi.org/10.7185/geochemlet.2119
      Watson, E. B., 1981. Diffusion in Magmas at Depth in the Earth: The Effects of Pressure and Dissolved H2O. Earth and Planetary Science Letters, 52(2): 291-301. https://doi.org/10.1016/0012‐821X(81)90184‐9
      Weir, C. E., Lippincott, E. R., Van Valkenburg, A., et al., 1959. Infrared Studies in the 1‐ to 15‐Micron Region to 30, 000 Atmospheres. Journal of Research of the National Bureau of Standards Section A, Physics and Chemistry, 63A(1): 55-62. https://doi.org/10.6028/jres.063A.003
      Xie, H.S., 1997. An Introduction to Material Science of Deep Earth. Science Press, Beijing (in Chinese).
      Xu, J., Mao, H., 2000. Moissanite: a Window for High‐Pressure Experiments. Science, 290(5492): 783-785. https://doi.org/10.1126/science.290.5492.783
      Yang, X. Z., Liu, D. D., Xia, Q. K., 2014. CO2‐Induced Small Water Solubility in Olivine and Implications for Properties of the Shallow Mantle. Earth and Planetary Science Letters, 403: 37-47. https://doi.org/10.1016/j.epsl. 2014. 06.025 doi: 10.1016/j.epsl.2014.06.025
      Yoder, H. S. Jr., 1950. High‐Low Quartz Inversion up to 10, 000 Bars. Transactions, American Geophysical Union, 31(6): 827. https://doi.org/10.1029/tr031i006p00827
      Zhang, J. F., Wang, C., Wang, Y. F., 2012. Experimental Constraints on the Destruction Mechanism of the North China Craton. Lithos, 149: 91-99. https://doi.org/10.1016/j.lithos.2012.03.015
      Zhang, L., Guo, X., Wang, Q. X., et al., 2017. Diffusion of Hydrous Species in Model Basaltic Melt. Geochimica et Cosmochimica Acta, 215: 377-386. https://doi.org/10.1016/j.gca.2017.07.019
      Zhang, Y. X., Cherniak, D. J., 2010. Diffusion in Minerals and Melts: Introduction. Reviews in Mineralogy and Geochemistry, 72: 1-4.
      Zhang, Y. X., Jenkins, J., Xu, Z. J., 1997. Kinetics of the Reaction H2O+O→2OH in Rhyolitic Glasses Upon Cooling: Geospeedometry and Comparison with Glass Transition. Geochimica et Cosmochimica Acta, 61(11): 2167-2173. https://doi.org/10.1016/S0016‐7037(97)00054‐9
      Zhang, Y. X., Stolper, E. M., Ihinger, P. D., 1995. Kinetics of the Reaction H2O+O=2OH in Rhyolitic and Albitic Glasses; Preliminary Results. American Mineralogist, 80(5/6): 593-612. https://doi.org/10.2138/am‐1995‐5‐618
      刘曦, 张立飞, Hack, C.A., 等, 2009. 水对硅酸盐体系部分熔融行为的影响: 第二临界端点的重要意义. 岩石学报, 25(12): 3407-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912028.htm
      倪怀玮, 2020. 超临界地质流体的性质和效应. 矿物岩石地球化学通报, 39(3): 443-447, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003003.htm
      谢鸿森, 1997. 地球深部物质科学导论. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (1383) PDF downloads(298) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return