Citation: | Ni Huaiwei, Wang Qingxia, Wang Chunguang, Zhang Yanfei, 2022. Experimental Petrology: Status Quo and Prospect. Earth Science, 47(8): 2691-2700. doi: 10.3799/dqkx.2022.259 |
Ardia, P., Giordano, D., Schmidt, M. W, 2008. A Model for the Viscosity of Rhyolite as a Function of H2O‐Content and Pressure: a Calibration Based on Centrifuge Piston Cylinder Experiments. Geochimica et Cosmochimica Acta, 72(24): 6103-6123. https://doi.org/10.1016/j.gca.2008.08.025
|
Bassett, W. A., Shen, A. H., Bucknum, M., et al., 1993. A New Diamond Anvil Cell for Hydrothermal Studies to 2.5 GPa and from -190 to 1 200 ℃. Review of Scientific Instruments, 64(8): 2340-2345. https://doi.org/10.1063/1.1143931
|
Belonoshko, A. B., Saxena, S. K, 1992. A Unified Equation of State for Fluids of C‐H‐O‐N‐S‐Ar Composition and Their Mixtures up to very High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 56(10): 3611-3626. https://doi.org/10.1016/0016‐7037(92)90157‐E
|
Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton.
|
Boyd, F. R., England, J. L, 1960. Apparatus for Phase‐Equilibrium Measurements at Pressures up to 50 Kilobars and Temperatures up to 1 750 ℃. Journal of Geophysical Research, 65(2): 741-748. https://doi.org/10.1029/jz065i002p00741
|
Cashman, K. V., Sparks, R. S. J., Blundy, J. D, 2017. Vertically Extensive and Unstable Magmatic Systems: a Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
|
Chen, W., Xiong, X. L., Wang, J. T., et al., 2018. TiO2 Solubility and Nb and Ta Partitioning in Rutile‐Silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123(6): 4765-4782.
|
Costa, F., 2021. Clocks in Magmatic Rocks. Annual Review of Earth and Planetary Sciences, 49: 231-252. https://doi.org/10.1146/annurev‐earth‐080320‐060708
|
Duan, Z. H., Zhang, Z. G., 2006. Equation of State of the H2O, CO2, and H2O‐CO2 Systems up to 10 GPa and 2 573.15 K: Molecular Dynamics Simulations with Ab Initio Potential Surface. Geochimica et Cosmochimica Acta, 70(9): 2311-2324. https://doi.org/10.1016/j.gca.2006.02.009
|
Fichtner, C. E., Schmidt, M. W., Liebske, C., et al., 2021. Carbon Partitioning between Metal and Silicate Melts during Earth Accretion. Earth and Planetary Science Letters, 554: 116659. https://doi.org/10.1016/j.epsl.2020.116659
|
Forman, R. A., Piermarini, G. J., Barnett, J. D., et al., 1972. Pressure Measurement Made by the Utilization of Ruby Sharp‐Line Luminescence. Science, 176(4032): 284-285. https://doi.org/10.1126/science.176.4032.284
|
Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. a Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid‐Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197-212. https://doi.org/10.1007/BF00307281
|
Green, D. H., Hibberson, W. O., Rosenthal, A., et al., 2014. Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle. Journal of Petrology, 55(10): 2067-2096. https://doi.org/10.1093/petrology/egu050
|
Green, D.H., 1973. Experimental Melting Studies on a Model Upper Mantle Composition at High‐Pressure under Water‐Saturated and Water‐Undersaturated Conditions. Earth and Planetary Science Letters, . 19: 37-53. https://doi.org/10.1016/0012‐821X(73)90091‐5
|
Green, D.H., Hibberson, W.O., Kovacs, I., Rosenthal, A., 2010. Water and Its Influence on the Lithosphere‐Asthenosphere Boundary. Nature, 467(7314): 448-451. https://doi.org/10.1038/nature09369
|
Grove, T., Till, C., Krawczynski, M., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and, 40(1): 413-439. doi: 10.1146/annurev‐earth‐042711‐105310
|
Grove, T.L., Chatterjee, N., Parman, S.W., Medard, E., 2006. The Influence of H2O on Mantle Wedge Melting. Earth and Planetary Science Letters, . 249(1): 74-89. https://doi.org/10.1016/j.epsl.2006.06.043
|
Guo, X., Zhang, L., Behrens, H., et al., 2016. Probing the Status of Felsic Magma Reservoirs: Constraints from the P‐T‐H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth and Planetary Science Letters, 433: 54-62. https://doi.org/10.1016/j.epsl.2015.10.036
|
Holland, T. J. B., Powell, R., 1990. An Enlarged and Updated Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: The System K2O‐Na2O‐CaO‐MgO‐MnO‐FeO‐Fe2O3‐Al2O3‐TiO2‐SiO2‐C‐H2‐O2. Journal of Metamorphic Geology, 8(1): 89-124.
|
Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525‐1314.2010.00923.x
|
Jamtveit, B., 2010. Metamorphism: From Patterns to Processes. Elements, 6(3): 149-152. https://doi.org/10.2113/gselements.6.3.149
|
Jiang, D. W., Gao, Y., Cao, M., et al., 2021. Diamond Anvil Cell with Double Coaxial Chambers. Review of Scientific Instruments, 92(12): 123901. https://doi.org/10.1063/5.0063573
|
Karki, B. B., 2015. First‐Principles Computation of Mantle Materials in Crystalline and Amorphous Phases. Physics of the Earth and Planetary Interiors, 240: 43-69. https://doi.org/10.1016/j.pepi.2014.11.004
|
Kawai, N., 1966. A Static High Pressure Apparatus with Tapering Multi‐Pistons Forming a Sphere. I. Proceedings of the Japan Academy, 42(4): 385-388. https://doi.org/10.2183/pjab1945.42.385
|
Kawamoto, T., Holloway,J.R., 1997. Melting Temperature and Partial Melt Chemistry of H2O‐Saturated Mantle Peridotite to 11 Gigapascals. Science, 276(5310): 240-243. https://doi.org/10.1126/science.276.5310.240
|
Kirkpatrick, R.J., 1975. Crystal Growth from the Melt: a Review. American Mineralogist, 60: 798-814.
|
Kushiro, I., Syono, Y., Akimoto, S., 1968. Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Journal of Geophysical Research, 73(18): 6023-6029. https://doi.org/10.1029/JB073i018p06023
|
Li, J. K., Bassett, W. A., Chou, I. M., et al., 2016. An Improved Hydrothermal Diamond Anvil Cell. Review of Scientific Instruments, 87(5): 053108. https://doi.org/10.1063/1.4947506
|
Liu, L. P., Hu, X. M., Liu, X., 2018. MgO Partition between Olivine and K2O‐Rich Silicate Melt: Geothermometers Applicable to High Potassium Magmas. Journal of Asian Earth Sciences, 166: 181-194. https://doi.org/10.1016/j.jseaes.2018.07.036
|
Liu, X., Zhang, L. F., Alistair, H., et al., 2009. Effect of Water on the Partial Melting Process of some Silicate Systems: Important Implication of the Second Critical Endpoint. Acta Petrologica Sinica, 25(12): 3407-3421(in Chinese with English abstract).
|
Luth, W.C., Tuttle, O.F., 1963. Externally Heated Cold‐Seal Pressure Vessels for Use to 10 000 Bars and 750℃. American Mineralogist, 48: 1401-1403.
|
Mibe, K., Kawamoto, T., Matsukage, K. N., et al., 2011. Slab Melting Versus Slab Dehydration in Subduction‐Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8177-8182. https://doi.org/10.1073/pnas.1010968108
|
Millhollen, G.L., Irving, A.J., Wyllie, P.J., 1974. Melting Interval of Peridotite with 5.7% Water to 30 Kilobars. The Journal of Geology, 82(5): 575-587. https://doi.org/10.2307/30059149
|
Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932
|
Mysen, B.O., Boettcher, A.L., 1975. Melting of a Hydrous Mantle: Ⅰ. Phase Relations of Natural Peridotite at High‐Pressures and Temperatures with Controlled Activities of Water, Carbon Dioxide, and Hydrogen. Journal of Petrology, 16(1): 520-548. https://doi.org/10.1093/petrology/16.1.520
|
Ni, H. W., 2015. Oxygen Isotope Thermometry, Speedometry, and Hygrometry: Apparent Equilibrium Temperature Versus Closure Temperature. Geochemistry, Geophysics, Geosystems, 16(1): 27-39. https://doi.org/10.1002/2014gc005574
|
Ni, H. W., Keppler, H., Walte, N., et al., 2014. In Situ Observation of Crystal Growth in a Basalt Melt and the Development of Crystal Size Distribution in Igneous Rocks. Contributions to Mineralogy and Petrology, 167(5): 1003. https://doi.org/10.1007/s00410‐014‐1003‐9.
|
Ni, H. W., Zhang, L., Xiong, X. L., et al., 2017. Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. Earth‐Science Reviews, 167: 62-71. https://doi.org/10.1016/j.earscirev.2017.02.006
|
Ni, H. W., 2020. Properties and Effects of Supercritical Geofluids. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 443-447 (in Chinese with English abstract).
|
Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post‐Perovskite Phase of MgSiO3 in Earth Layer. Nature, 430(6998): 445-448. https://doi.org/10.1038/nature02701
|
Poe, B. T., McMillan, P. F., Rubie, D. C., et al., 1997. Silicon and Oxygen Self‐Diffusivities in Silicate Liquids Measured to 15 Gigapascals and 2 800 Kelvin. Science, 276(5316): 1245-1248. https://doi.org/10.1126/science.276.5316.1245
|
Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. Treatise on Geochemistry. Elsevier, Amsterdam, 669-701. https://doi.org/10.1016/b978‐0‐08‐095975‐7.00321‐1
|
Schmidt, M. W., Ulmer, P., 2004. A Rocking Multianvil: Elimination of Chemical Segregation in Fluid‐Saturated High‐Pressure Experiments. Geochimica et Cosmochimica Acta, 68(8): 1889-1899. https://doi.org/10.1016/j.gca.2003.10.031.
|
Sekine, T., Wyllie, P. J., 1983. Experimental Simulation of Mantle Hybridization in Subduction Zones. The Journal of Geology, 91(5): 511-528. https://doi.org/10.1086/628802
|
Shen, A. H., Keppler, H., 1997. Direct Observation of Complete Miscibility in the Albite‐H2O System. Nature, 385(6618): 710-712. https://doi.org/10.1038/385710a0
|
Smith, P.M., Asimow, P.D., 2005. Adiabat_1ph: a New Public Front‐End to the MELTS, pMELTS, and pHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): Q02004. https://doi.org/10.1029/2004GC000816
|
Testemale, D., Argoud, R., Geaymond, O., et al., 2005. High Pressure/High Temperature Cell for X‐Ray Absorption and Scattering Techniques. Review of Scientific Instruments, 76(4): 043905. https://doi.org/10.1063/1.1884188
|
Till, C.B., Grove, T.L., Withers, A.C., 2011. The Beginnings of Hydrous Mantle Wedge Melting. Contributions to Mineralogy and Petrology, 163: 669-688. https://doi.org/10.1007/s00410‐011‐0692‐6
|
Wang, C. G., Liang, Y., Xu, W. L., et al., 2013. Effect of Melt Composition on Basalt and Peridotite Interaction: Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton. Contributions to Mineralogy and Petrology, 166(5): 1469-1488. https://doi.org/10.1007/s00410‐013‐0938‐6
|
Wang, Q. X., Zhou, D. Y., Li, W. C., et al., 2021. Spinodal Decomposition of Supercritical Fluid Forms Melt Network in a Silicate‐H2O System. Geochemical Perspectives Letters, 22-26. https://doi.org/10.7185/geochemlet.2119
|
Watson, E. B., 1981. Diffusion in Magmas at Depth in the Earth: The Effects of Pressure and Dissolved H2O. Earth and Planetary Science Letters, 52(2): 291-301. https://doi.org/10.1016/0012‐821X(81)90184‐9
|
Weir, C. E., Lippincott, E. R., Van Valkenburg, A., et al., 1959. Infrared Studies in the 1‐ to 15‐Micron Region to 30, 000 Atmospheres. Journal of Research of the National Bureau of Standards Section A, Physics and Chemistry, 63A(1): 55-62. https://doi.org/10.6028/jres.063A.003
|
Xie, H.S., 1997. An Introduction to Material Science of Deep Earth. Science Press, Beijing (in Chinese).
|
Xu, J., Mao, H., 2000. Moissanite: a Window for High‐Pressure Experiments. Science, 290(5492): 783-785. https://doi.org/10.1126/science.290.5492.783
|
Yang, X. Z., Liu, D. D., Xia, Q. K., 2014. CO2‐Induced Small Water Solubility in Olivine and Implications for Properties of the Shallow Mantle. Earth and Planetary Science Letters, 403: 37-47. https://doi.org/10.1016/j.epsl. 2014. 06.025 doi: 10.1016/j.epsl.2014.06.025
|
Yoder, H. S. Jr., 1950. High‐Low Quartz Inversion up to 10, 000 Bars. Transactions, American Geophysical Union, 31(6): 827. https://doi.org/10.1029/tr031i006p00827
|
Zhang, J. F., Wang, C., Wang, Y. F., 2012. Experimental Constraints on the Destruction Mechanism of the North China Craton. Lithos, 149: 91-99. https://doi.org/10.1016/j.lithos.2012.03.015
|
Zhang, L., Guo, X., Wang, Q. X., et al., 2017. Diffusion of Hydrous Species in Model Basaltic Melt. Geochimica et Cosmochimica Acta, 215: 377-386. https://doi.org/10.1016/j.gca.2017.07.019
|
Zhang, Y. X., Cherniak, D. J., 2010. Diffusion in Minerals and Melts: Introduction. Reviews in Mineralogy and Geochemistry, 72: 1-4.
|
Zhang, Y. X., Jenkins, J., Xu, Z. J., 1997. Kinetics of the Reaction H2O+O→2OH in Rhyolitic Glasses Upon Cooling: Geospeedometry and Comparison with Glass Transition. Geochimica et Cosmochimica Acta, 61(11): 2167-2173. https://doi.org/10.1016/S0016‐7037(97)00054‐9
|
Zhang, Y. X., Stolper, E. M., Ihinger, P. D., 1995. Kinetics of the Reaction H2O+O=2OH in Rhyolitic and Albitic Glasses; Preliminary Results. American Mineralogist, 80(5/6): 593-612. https://doi.org/10.2138/am‐1995‐5‐618
|
刘曦, 张立飞, Hack, C.A., 等, 2009. 水对硅酸盐体系部分熔融行为的影响: 第二临界端点的重要意义. 岩石学报, 25(12): 3407-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912028.htm
|
倪怀玮, 2020. 超临界地质流体的性质和效应. 矿物岩石地球化学通报, 39(3): 443-447, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003003.htm
|
谢鸿森, 1997. 地球深部物质科学导论. 北京: 科学出版社.
|