• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 4
    Apr.  2024
    Turn off MathJax
    Article Contents
    Zhou Zihao, Du Yao, Sun Xiaoliang, Fan Hongchen, Deng Yamin, 2024. Quantification of Groundwater Discharge and Its Spatial Variability in Jingjiang Section of Middle Reach of the Yangtze River. Earth Science, 49(4): 1448-1458. doi: 10.3799/dqkx.2022.266
    Citation: Zhou Zihao, Du Yao, Sun Xiaoliang, Fan Hongchen, Deng Yamin, 2024. Quantification of Groundwater Discharge and Its Spatial Variability in Jingjiang Section of Middle Reach of the Yangtze River. Earth Science, 49(4): 1448-1458. doi: 10.3799/dqkx.2022.266

    Quantification of Groundwater Discharge and Its Spatial Variability in Jingjiang Section of Middle Reach of the Yangtze River

    doi: 10.3799/dqkx.2022.266
    • Received Date: 2022-03-03
      Available Online: 2024-04-30
    • Publish Date: 2024-04-25
    • The interaction between groundwater and rivers is critical to maintaining the health of river ecosystems, but the quantitative research on the groundwater discharge to large rivers in humid regions is currently weak. In response to this problem, in this paper it takes the Jingjiang Section of the middle reach of the Yangtze River as the study area, and uses the 222Rn mass balance model to estimate the groundwater discharge in the Jingjiang Section of the middle reach of the Yangtze River through field sampling and hydrometeorological data collection, and uses the EC mass balance model and water balance model to verify the result of 222Rn mass balance. The results show that the average groundwater discharge rate of the Jingjiang Section in the middle reach of the Yangtze River is 133 mm/d, the total discharge volume is 1.06×108 m3/d, and the contribution to the water balance is about 10.99%. Among different sub-sections, the groundwater discharge rate from Zhicheng to Shashi is the highest, and the groundwater discharge rate from Jianli to Luoshan is the lowest. Aquifer richness and groundwater table may be key factors controlling the rate of groundwater discharge. This research is of great significance for the local eco-environmental protection and the control and management of water resources, and can also provide a theoretical basis for the better development and utilization of water resources in the middle reach of the Yangtze River and eco-environmental protection in the future.

       

    • loading
    • Batlle-Aguilar, J., Harrington, G. A., Leblanc, M., et al., 2014. Chemistry of Groundwater Discharge Inferred from Longitudinal River Sampling. Water Resources Research, 50(2): 1550-1568. https://doi.org/10.1002/2013wr013591
      Bauer, P., Held, R. J., Zimmermann, S., et al., 2006. Coupled Flow and Salinity Transport Modelling in Semi-Arid Environments: The Shashe River Valley, Botswana. Journal of Hydrology, 316(1/2/3/4): 163-183. https://doi.org/10.1016/j.jhydrol.2005.04.018
      Boudreau, B. P., 1996. The Diffusive Tortuosity of Fine-Grained Unlithified Sediments. Geochimica et Cosmochimica Acta, 60(16): 3139-3142. https://doi.org/10.1016/0016-7037(96)00158-5
      Burnett, W. C., Peterson, R. N., Chanyotha, S., et al., 2013. Using High-Resolution In Situ Radon Measurements to Determine Groundwater Discharge at a Remote Location: Tonle Sap Lake, Cambodia. Journal of Radioanalytical and Nuclear Chemistry, 296(1): 97-103. https://doi.org/10.1007/s10967-012-1914-8
      Burnett, W. C., Peterson, R. N., Santos, I. R., et al., 2010. Use of Automated Radon Measurements for Rapid Assessment of Groundwater Flow into Florida Streams. Journal of Hydrology, 380(3-4): 298-304. https://doi.org/10.1016/j.jhydrol.2009.11.005
      Che, Q. H., Su, X. S., Zheng, S. D., et al., 2021. Interaction between Surface Water and Groundwater in the Alluvial Plain (Anqing Section) of the Lower Yangtze River Basin: Environmental Isotope Evidence. Journal of Radioanalytical and Nuclear Chemistry, 329(3): 1331-1343. https://doi.org/10.1007/s10967-021-07889-4
      Chen, X., 2007. Hydrologic Connections of a Stream-Aquifer-Vegetation Zone in South-Central Platte River Valley, Nebraska. Journal of Hydrology, 333(2/3/4): 554-568. https://doi.org/10.1016/j.jhydrol.2006.09.020
      Corbett, D. R., Burnett, W. C., Cable, P. H., et al., 1998. A Multiple Approach to the Determination of Radon Fluxes from Sediments. Journal of Radioanalytical and Nuclear Chemistry, 236(1/2): 247-253. https://doi.org/10.1007/BF02386351
      Dai, W. Y., 2021. Analysis of Riverbed Evolution of the Waigaoqiao Branch Channel of the Yangtze Estuary in Flood Period under New Water and Sediment Conditions. American Journal of Water Science and Engineering, 7(2): 48-56. https://doi.org/10.11648/j.ajwse.20210702.13
      Deng, Q. J., Tang, Z. H., Wu, Q., et al., 2014. Characteristics of Groundwater and Its Influencing Factors in Jingzhou City. Resources and Environment in the Yangtze Basin, 23(9): 1215-1221 (in Chinese with English abstract).
      Dimova, N. T., Burnett, W. C., 2011. Evaluation of Groundwater Discharge into Small Lakes Based on the Temporal Distribution of Radon-222. Limnology and Oceanography, 56(2): 486-494. https://doi.org/10.4319/lo.2011.56.2.0486
      Fan, X. J., Wang, L., Li, C., et al., 2021. Occurrence Characteristics of Shallow Groundwater in Urban District in Yichang. Resources Environment & Engineering, 35(2): 211-215, 231 (in Chinese with English abstract).
      Freeze, R. A., Witherspoon, P. A., 1967. Theoretical Analysis of Regional Groundwater Flow: 2. Effect of Water-Table Configuration and Subsurface Permeability Variation. Water Resources Research, 3(2): 623-634. https://doi.org/10.1029/wr003i002p00623
      Gao, Y., Chen, L., Zhang, W., et al., 2021. Spatiotemporal Variations in Characteristic Discharge in the Yangtze River Downstream of the Three Gorges Dam. Science of the Total Environment, 785(3-4): 147343. https://doi.org/10.1016/j.scitotenv.2021.147343
      Han, J. B., Xu, J. X., Yi, L., et al., 2022. Seasonal Interaction of River Water-Groundwater-Salt Lake Brine and Its Influence on Water-Salt Balance in the Nalenggele River Catchment in Qaidam Basin, NW China. Journal of Earth Science, 33(5): 1298-1308. https://doi.org/10.1007/s12583-022-1731-0
      Han, J. Q., Wang, Y., Sun, Z. H., 2021. Changes of Water Stage in the Middle Yangtze River Influenced by Human Activities in the Past 70 Years. Frontiers of Earth Science, 15(1): 121-132. https://doi.org/10.1007/s11707-020-0855-8
      Huang, C. S., Zhou, Y., Zhang, S. N., et al., 2021. Groundwater Resources in the Yangtze River Basin and Its Current Development and Utilization. Geology in China, 48(4): 979-1000 (in Chinese with English abstract).
      Kluge, T., Ilmberger, J., von Rohden, C., et al., 2007. Tracing and Quantifying Groundwater Inflow into Lakes Using a Simple Method for Radon-222 Analysis. Hydrology and Earth System Sciences, 11(5): 1621-1631. https://doi.org/10.5194/hess-11-1621-2007
      Li, M. T., 2005. Study on the Coupling Effect of Main Water and Sediment in the Middle and Lower Reaches of the Yangtze River and Modern Riverbed Geomorphology(Dissertation). East China Normal University, Shanghai (in Chinese with English abstract).
      Liao, F., Wang, G. C., Shi, Z. M., et al., 2018. Estimation of Groundwater Discharge and Associated Chemical Fluxes into Poyang Lake, China: Approaches Using Stable Isotopes (δD and δ18O) and Radon. Hydrogeology Journal, 26(5): 1625-1638. https://doi.org/10.1007/s10040-018-1793-3
      Liu, J., Tian, Y., Huang, K., et al., 2021. Spatial-Temporal Differentiation of the Coupling Coordinated Development of Regional Energy-Economy-Ecology System: A Case Study of the Yangtze River Economic Belt. Ecological Indicators, 124(2): 107394. https://doi.org/10.1016/j.ecolind.2021.107394
      Liu, S., Zhu, J. Q., Tian, H., 2012. Main Water Issues and Countermeasures in Middle and Lower Reaches of Yangtze River. Journal of Yangtze University (Natural Science Edition), 9(1): 42-46, 5 (in Chinese with English abstract).
      Luo, X., Jiao, J. J., Wang, X. S., et al., 2016. Temporal 222Rn Distributions to Reveal Groundwater Discharge into Desert Lakes: Implication of Water Balance in the Badain Jaran Desert, China. Journal of Hydrology, 534: 87-103. https://doi.org/10.1016/j.jhydrol.2015.12.051
      Mao, L. F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493(in Chinese with English abstract).
      Martinez, J. L., Raiber, M., Cox, M. E., 2015. Assessment of Groundwater-Surface Water Interaction Using Long-Term Hydrochemical Data and Isotope Hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia. Science of the Total Environment, 536: 499-516. https://doi.org/10.1016/j.scitotenv.2015.07.031
      Ortega, L., Manzano, M., Custodio, E., et al., 2015. Using 222Rn to Identify and Quantify Groundwater Inflows to the Mundo River (SE Spain). Chemical Geology, 395: 67-79. https://doi.org/10.1016/j.chemgeo.2014.12.002
      Pan, B. Z., Liu, X. Y., 2021. A Review of Water Ecology Problems and Restoration in the Yangtze River Basin. Journal of Yangtze River Scientific Research Institute, 38(3): 1-8 (in Chinese with English abstract).
      Qi, L. Y., Huang, J. C., Gao, J. F., et al., 2017. Temporal and Spatial Simulation of Water Level and Velocity during Low Water Level Statistical Year in Lake Poyang. Resources and Environment in the Yangtze Basin, 26(4): 572-584 (in Chinese with English abstract).
      Rosenberry, D. O., Lewandowski, J., Meinikmann, K., et al., 2015. Groundwater—The Disregarded Component in Lake Water and Nutrient Budgets. Part 1: Effects of Groundwater on Hydrology. Hydrological Processes, 29(13): 2895-2921. https://doi.org/10.1002/hyp.10403
      Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795
      Wang, S. Y., He, X. B., Ding, Y. J., et al., 2020. Characteristics and Influencing Factors of Stable Hydrogen and Oxygen Isotopes in Groundwater in the Permafrost Region of the Source Region of the Yangtze River. Environmental Science, 41(1): 166-172 (in Chinese with English abstract).
      Wang, Y. S., Chen, X. X., Zhang, M. N., et al., 2017. Using Multiple Tracers to Quantify Groundwater Discharge to Yellow River in Weining Plain. IOP Conference Series: Earth and Environmental Science, 59(1): 012023. https://doi.org/10.1088/1755-1315/59/1/012023
      Xie, Q. C., Yang, J., Staffan Lundström, T., 2021. Sediment and Morphological Changes along Yangtze River's 500 km between Datong and Xuliujing before and after Three Gorges Dam Commissioning. Scientific Reports, 11(1): 13662. https://doi.org/10.1038/s41598-021-93004-2
      Xie, Y. Q., Cook, P. G., Shanafield, M., et al., 2016. Uncertainty of Natural Tracer Methods for Quantifying River-Aquifer Interaction in a Large River. Journal of Hydrology, 535: 135–147. https://doi.org/10.1016/j.jhydrol.2016.01.071
      Xu, J., Wang, Y. G., Chen, Y., et al., 2020. Characteristics on Spatiotemporal Variations of Surface Water Environmental Quality in Tuojiang River in Upper Reaches of Yangtze River Basin. Earth Science, 45(6): 1937-1947 (in Chinese with English abstract).
      Yang, B., Zhang, Y. H., 2020. Properties of Vertical Distribution of Velocity in Dongtinghu Lake. Water Resources and Power, 38(8): 33-36 (in Chinese with English abstract).
      Yang, J., Yu, Z. B., Yi, P., et al., 2020. Evaluation of Surface Water and Groundwater Interactions in the Upstream of Kui River and Yunlong Lake, Xuzhou, China. Journal of Hydrology, 583(15): 124549. https://doi.org/10.1016/j.jhydrol.2020.124549
      Yang, X. L., Yu, X. H., Wang, Y. Q., et al., 2019. Estimating the Response of Hydrological Regimes to Future Projections of Precipitation and Temperature over the Upper Yangtze River. Atmospheric Research, 230: 104627. https://doi.org/10.1016/j.atmosres.2019.104627
      Zhou, Y., Wenninger, J., Yang, Z., et al., 2013. Groundwater-Surface Water Interactions, Vegetation Dependencies and Implications for Water Resources Management in the Semi-Arid Hailiutu River Catchment, China: A Synthesis. Hydrology and Earth System Sciences, 17(7): 2435-2447. https://doi.org/10.5194/hess-17-2435-2013
      邓青军, 唐仲华, 吴琦, 等, 2014. 荆州市地下水动态特征及影响因素分析. 长江流域资源与环境, 23(9): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201409005.htm
      范小军, 汪力, 李超, 等, 2021. 宜昌市主城区浅层地下水的赋存特征初探. 资源环境与工程, 35(2): 211-215, 231. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202102015.htm
      黄长生, 周耘, 张胜男, 等, 2021. 长江流域地下水资源特征与开发利用现状. 中国地质, 48(4): 979-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104002.htm
      李茂田, 2005. 长江中下游干流水沙与现代河床地貌耦合作用研究(博士学位论文). 上海: 华东师范大学.
      刘松, 朱建强, 田皓, 2012. 长江中下游地区的主要水问题与对策. 长江大学学报(自然科学版), 9(1): 42-46, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201201014.htm
      毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
      潘保柱, 刘心愿, 2021. 长江流域水生态问题与修复述评. 长江科学院院报, 38(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202103002.htm
      齐凌艳, 黄佳聪, 高俊峰, 等, 2017. 鄱阳湖枯水水位及流速时空分布模拟. 长江流域资源与环境, 26(4): 572-584. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201704010.htm
      汪少勇, 何晓波, 丁永建, 等, 2020. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素. 环境科学, 41(1): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001020.htm
      许静, 王永桂, 陈岩, 等, 2020. 长江上游沱江流域地表水环境质量时空变化特征. 地球科学, 45(6): 1937-1947. doi: 10.3799/dqkx.2020.012
      杨斌, 张英豪, 2020. 洞庭湖流速垂向分布特性. 水电能源科学, 38(8): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202008009.htm
    • dqkxzx-49-4-1448-附图1-2.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (79) PDF downloads(11) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return