• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Xiong Xiaolin, Hou Tong, Wang Xiaolin, 2022. Advances and Perspectives of Experimental Metallogeny. Earth Science, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285
    Citation: Xiong Xiaolin, Hou Tong, Wang Xiaolin, 2022. Advances and Perspectives of Experimental Metallogeny. Earth Science, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285

    Advances and Perspectives of Experimental Metallogeny

    doi: 10.3799/dqkx.2022.285
    • Received Date: 2022-02-05
    • Publish Date: 2022-09-25
    • Experimental metallogeny, using high temperature and high pressure experimental apparatus, investigates the geochemical behavior of ore‐forming elements in mineral‐melt‐fluid systems. In the investigation on the metallogenic "source‐transport‐enrichment‐storage" process, high‐PT experiments play a key role in tracking the "transport‐enrichment" mechnism of ore‐forming elements, and thus experimental metallogeny has irreplaceable advantages in revealing ore‐forming process and key ore‐forming controlling factors. Experimental metallogeny has been developed with the development of high‐PT experimental techniques. Experimental metallogeny provides important basic data for the development of metallogeny, making up for the limits of natural samples in studying complex metallogenic process, and thus greatly promotes the development of metallogenic theory. This paper reviews the development history and research status of experimental metallogeny, and points out that the development of experimental metallogeny should focus on two aspects in the future: (1) strengthening the construction of experimental platform, especially the visualization‐online techniques, and (2) focusing on frontier studies oriented by national goals (e.g., critical metal mineralization).

       

    • loading
    • Alpers, C. N., Jambor, J. L., Nordstrom, D. K., 2000. Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, 40: 1-608. https://doi.org/10.2138/rmg.2000.40
      Ballhaus, C., Fonseca, R. O. C., Münker, C., et al., 2015. Spheroidal Textures in Igneous Rocks: Textural Consequences of H2O Saturation in Basaltic Melts. Geochimica et Cosmochimica Acta, 167: 241-252. https://doi.org/10.1016/j.gca.2015.07.029
      Botcharnikov, R. E., Koepke, J., Holtz, F., et al., 2005. The Effect of Water Activity on the Oxidation and Structural State of Fe in a Ferro‐Basaltic Melt. Geochimica et Cosmochimica Acta, 69(21): 5071-5085. https://doi.org/10.1016/j.gca.2005.04.023
      Cafagna, F., Jugo, P. J, 2016. An Experimental Study on the Geochemical Behavior of Highly Siderophile Elements (HSE) and Metalloids (As, Se, Sb, Te, Bi) in a MSS‐Iss‐Pyrite System at 650 ℃: a Possible Magmatic Origin for Co‐HSE‐Bearing Pyrite and the Role of Metalloid‐Rich Phases in the Fractionation of HSE. Geochimica et Cosmochimica Acta, 178: 233-258. https://doi.org/10.1016/j.gca.2015.12.035
      Chebotarev, D. A., Veksler, I. V., Wohlgemuth‐Ueberwasser, C., et al., 2018. Experimental Study of Trace Element Distribution between Calcite, Fluorite and Carbonatitic Melt in the System CaCO3+CaF2+Na2CO3±Ca3(PO4)2 at 100MPa. Contributions to Mineralogy and Petrology, 174(1): 1-13. https://doi.org/10.1007/s00410‐018‐1530‐x
      Chen, W. T., Zhou, M. F., Zhao, T. P, 2013. Differentiation of Nelsonitic Magmas in the Formation of the ~1.74 Ga Damiao Fe‐Ti‐P Ore Deposit, North China. Contributions to Mineralogy and Petrology, 165(6): 1341-1362. https://doi.org/10.1007/s00410‐013‐0861‐x
      Chou, I. M., Wang, R., Fang, J, 2021. In Situ Redox Control and Raman Spectroscopic Characterisation of Solutions below 300 ℃. Geochemical Perspectives Letters, 1-5. https://doi.org/10.7185/geochemlet.2135
      Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate‐ and REE‐Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148. https://doi.org/10.1130/g46893.1
      Derrey, I. T., Albrecht, M., Dupliy, E., et al., 2017. Experimental Tests on Achieving Equilibrium in Synthetic Fluid Inclusions: Results for Scheelite, Molybdenite, and Gold Solubility at 800 ℃ and 200 MPa. American Mineralogist, 102(2): 275-283. https://doi.org/10.2138/am‐2017‐5869
      Duchesne, J. C., Liégeois, J. P, 2015. The Origin of Nelsonite and High‐Zr Ferrodiorite Associated with Proterozoic Anorthosite. Ore Geology Reviews, 71: 40-56. https://doi.org/10.1016/j.oregeorev.2015.05.005
      Eugster, H. P, 1971. The Beginnings of Experimental Petrology. Science, 173(3996): 481-489. https://doi.org/10.1126/science.173.3996.481
      Eugster, H. P, 1957. Heterogeneous Reactions Involving Oxidation and Reduction at High Pressures and Temperatures. The Journal of Chemical Physics, 26(6): 1760-1761. https://doi.org/10.1063/1.1743626
      Fiege, A., Kirchner, C., Holtz, F., et al., 2011. Influence of Fluorine on the Solubility of Manganotantalite (MnTa2O6) and Manganocolumbite (MnNb2O6) in Granitic Melts‐An Experimental Study. Lithos, 122(3/4): 165-174. https://doi.org/10.1016/j.lithos.2010.12.012
      Helmy, H. M., Ballhaus, C., Wohlgemuth‐Ueberwasser, C., et al., 2010. Partitioning of Se, As, Sb, Te and Bi between Monosulfide Solid Solution and Sulfide Melt: Application to Magmatic Sulfide Deposits. Geochimica et Cosmochimica Acta, 74(21): 6174-6179. https://doi.org/10.1016/j.gca.2010.08.009
      Hou, T., Charlier, B., Holtz, F., et al., 2018. Immiscible Hydrous Fe‐Ca‐P Melt and the Origin of Iron Oxide‐Apatite Ore Deposits. Nature Communications, 9: 1415. https://doi.org/10.1038/s41467‐018‐03761‐4
      Hou, T., Charlier, B., Namur, O., et al., 2017. Experimental Study of Liquid Immiscibility in the Kiruna‐Type Vergenoeg Iron‐Fluorine Deposit, South Africa. Geochimica et Cosmochimica Acta, 203: 303-322. https://doi.org/10.1016/j.gca.2017.01.025
      Hou, T., Zhang, Z. C., Ye, X. R., et al., 2011. Noble Gas Isotopic Systematics of Fe‐Ti‐V Oxide Ore‐Related Mafic‐Ultramafic Layered Intrusions in the Panxi Area, China: The Role of Recycled Oceanic Crust in Their Petrogenesis. Geochimica et Cosmochimica Acta, 75(22): 6727-6741. https://doi.org/10.1016/j.gca.2011.09.003
      Jégo, S., Pichavant, M, 2012. Gold Solubility in Arc Magmas: Experimental Determination of the Effect of Sulfur at 1000 ℃ and 0.4 GPa. Geochimica et Cosmochimica Acta, 84: 560-592. https://doi.org/10.1016/j.gca.2012.01.027
      Kjarsgaard, B. A, 1998. Phase Relations of a Carbonated High‐CaO Nephelinite at 0.2 and 0.5 GPa. Journal of Petrology, 39(11/12): 2061-2075. https://doi.org/10.1093/petroj/39.11‐12.2061
      Kotzé, E., Schuth, S., Goldmann, S., et al., 2019. The Mobility of Palladium and Platinum in the Presence of Humic Acids: an Experimental Study. Chemical Geology, 514: 65-78. https://doi.org/10.1016/j.chemgeo.2019.03.028
      Latypov, R., Chistyakova, S., Mukherjee, R, 2017. A Novel Hypothesis for Origin of Massive Chromitites in the Bushveld Igneous Complex. Journal of Petrology, 58(10): 1899-1940. https://doi.org/10.1093/petrology/egx077
      Li, J. K., Liu, Y. C., Zhao, Z., et al., 2018. Roles of Carbonate/CO2 in the Formation of Quartz‐Vein Wolframite Deposits: Insight from the Crystallization Experiments of Huebnerite in Alkali‐Carbonate Aqueous Solutions in a Hydrothermal Diamond‐Anvil Cell. Ore Geology Reviews, 95: 40-48. https://doi.org/10.1016/j.oregeorev.2018.02.024
      Li, J. K., Chou, I, 2015. Hydrogen in Silicate Melt Inclusions in Quartz from Granite Detected with Raman Spectroscopy. Journal of Raman Spectroscopy, 46: 983-986. https://doi.org/10.1002/JRS.4644
      Li, J. K., Chou, I. M, 2017. Homogenization Experiments of Crystal‐Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond‐Anvil Cell. Geofluids, 2017: 9252913. https://doi.org/10.1155/2017/9252913
      Li, J. K., Liu, Y. C., Zhao, Z., et al., 2018. Roles of Carbonate/CO2 in the Formation of Quartz‐Vein Wolframite Deposits: Insight from the Crystallization Experiments of Huebnerite in Alkali‐Carbonate Aqueous Solutions in a Hydrothermal Diamond‐Anvil Cell. Ore Geology Reviews, 95: 40-48. https://doi.org/10.1016/j.oregeorev.2018.02.024
      Li, Y., Andreas, A, 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355/356: 327-340. https://doi.org/10.1016/j.epsl.2012.08.008
      Liu, Y. N., Brenan, J, 2015. Partitioning of Platinum‐Group Elements (PGE) and Chalcogens (Se, Te, As, Sb, Bi) between Monosulfide‐Solid Solution (MSS), Intermediate Solid Solution (ISS) and Sulfide Liquid at Controlled fO2fS2 Conditions. Geochimica et Cosmochimica Acta, 159: 139-161. https://doi.org/10.1016/j.gca.2015.03.021
      Lledo, H. L., Jenkins, D. M, 2007. Experimental Investigation of the Upper Thermal Stability of Mg‐Rich Actinolite; Implications for Kiruna‐Type Iron Deposits. Journal of Petrology, 49(2): 225-238. https://doi.org/10.1093/petrology/egm078
      Lukkari, S., Holtz, F, 2007. Phase Relations of a F‐Enriched Peraluminous Granite: an Experimental Study of the Kymi Topaz Granite Stock, Southern Finland. Contributions to Mineralogy and Petrology, 153(3): 273-288. https://doi.org/10.1007/s00410‐006‐0146‐8
      Martin, L. H. J., Schmidt, M. W., Mattsson, H. B., et al., 2012. Element Partitioning between Immiscible Carbonatite‐Kamafugite Melts with Application to the Italian Ultrapotassic Suite. Chemical Geology, 320/321: 96-112. https://doi.org/10.1016/j.chemgeo.2012.05.019
      Martin, L. H. J., Schmidt, M. W., Mattsson, H. B., et al., 2013. Element Partitioning between Immiscible Carbonatite and Silicate Melts for Dry and H2O‐Bearing Systems at 1~3 GPa. Journal of Petrology, 54(11): 2301-2338. https://doi.org/10.1093/petrology/egt048
      McLeish, D. F., Williams‐Jones, A. E., Vasyukova, O. V., et al., 2021. Colloidal Transport and Flocculation are the Cause of the Hyperenrichment of Gold in Nature. Proceedings of the National Academy of Sciences of the United States of America, 118(20): e2100689118. https://doi.org/10.1073/pnas.2100689118
      Migdisov, A., Williams‐Jones, A. E., Brugger, J., et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439: 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005
      Migdisov, A. A., Williams‐Jones, A. E, 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore‐Forming Magmatic‐Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020
      Mondal, S. K., Mathez, E. A, 2007. Origin of the UG2 Chromitite Layer, Bushveld Complex. Journal of Petrology, 48(3): 495-510. https://doi.org/10.1093/petrology/egl069
      Piña, R., Gervilla, F., Helmy, H., et al., 2020. Partition Behavior of Platinum‐Group Elements during the Segregation of Arsenide Melts from Sulfide Magma. American Mineralogist, 105: 1889-1897. https://doi.org/10.2138/am‐2020‐7477
      Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Switzerland, 1250.
      Pokrovski, G. S., Dubrovinsky, L. S, 2011. The S3- Ion is Stable in Geological Fluids at Elevated Temperatures and Pressures. Science, 331(6020): 1052-1054. https://doi.org/10.1126/science.1199911
      Pokrovski, G. S., Kokh, M. A., Guillaume, D., et al., 2015. Sulfur Radical Species Form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489. https://doi.org/10.1073/pnas.1506378112
      Qiu, Y., Yang, Y. X., Wang, X. L., et al., 2020a. In Situ Raman Spectroscopic Quantification of Aqueous Sulfate: Experimental Calibration and Application to Natural Fluid Inclusions. Chemical Geology, 533: 119447. https://doi.org/10.1016/j.chemgeo.2019.119447
      Qiu, Y., Zhang, R. Q., Chou, I. M., et al., 2021. Boron‐Rich Ore‐Forming Fluids in Hydrothermal W‐Sn Deposits from South China: Insights from in Situ Raman Spectroscopic Characterization of Fluid Inclusions. Ore Geology Reviews, 132: 104048. https://doi.org/10.1016/j.oregeorev.2021.104048
      Qiu, Y., Wang, X. L., Liu, X., et al., 2020b. In Situ Raman Spectroscopic Quantification of CH4‐CO2 Mixture: Application to Fluid Inclusions Hosted in Quartz Veins from the Longmaxi Formation Shales in Sichuan Basin, Southwestern China. Petroleum Science, 17(1): 23-35. https://doi.org/10.1007/s12182‐019‐00395‐z
      Schannor, M., Veksler, I. V., Hecht, L., et al., 2018. Small‐Scale Sr and O Isotope Variations through the UG2 in the Eastern Bushveld Complex: The Role of Crustal Fluids. Chemical Geology, 485: 100-112. https://doi.org/10.1016/j.chemgeo.2018.03.040
      Shang, L. B., Chou, I. M., Lu, W. J., et al., 2009. Determination of Diffusion Coefficients of Hydrogen in Fused Silica between 296 and 523 K by Raman Spectroscopy and Application of Fused Silica Capillaries in Studying Redox Reactions. Geochimica et Cosmochimica Acta, 73(18): 5435-5443. https://doi.org/10.1016/j.gca.2009.06.001
      Shang, L. B., Williams‐Jones, A. E., Wang, X. S., et al., 2020. An Experimental Study of the Solubility and Speciation of MoO3(s) in Hydrothermal Fluids at Temperatures up to 350 ℃. Economic Geology, 115(3): 661-669. https://doi.org/10.5382/econgeo.4715
      Shaw, H. R, 1963. Hydrogen‐Water Vapor Mixtures: Control of Hydrothermal Atmospheres by Hydrogen Osmosis. Science, 139(3560): 1220-1222. https://doi.org/10.1126/science.139.3560.1220
      Smith, M. P., Moore, K., Kavecsánszki, D., et al., 2016. From Mantle to Critical Zone: a Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geoscience Frontiers, 7(3): 315-334. https://doi.org/10.1016/j.gsf.2015.12.006
      Song, W. L., Xu, C., Veksler, I. V., et al., 2016. Experimental Study of REE, Ba, Sr, Mo and W Partitioning between Carbonatitic Melt and Aqueous Fluid with Implications for Rare Metal Mineralization. Contributions to Mineralogy and Petrology, 171(1): 1-12. https://doi.org/10.1007/s00410‐015‐1217‐5
      Tropper, P., Manning, C. E., Harlov, D. E, 2013. Experimental Determination of CePO4 and YPO4 solubilities in H2O‐NaF at 800 ℃ and 1 GPa: Implications for Rare Earth Element Transport in High‐Grade Metamorphic Fluids. Geofluids, 13(3): 372-380. https://doi.org/10.1111/gfl.12031
      Veksler, I. V., Hou, T, 2020. Experimental Study on the Effects of H2O Upon Crystallization in the Lower and Critical Zones of the Bushveld Complex with an Emphasis on Chromitite Formation. Contributions to Mineralogy and Petrology, 175(9): 1-17. https://doi.org/10.1007/s00410‐020‐01733‐w
      Veksler, I. V., Dorfman, A. M., Dulski, P., et al., 2012. Partitioning of Elements between Silicate Melt and Immiscible Fluoride, Chloride, Carbonate, Phosphate and Sulfate Melts, with Implications to the Origin of Natrocarbonatite. Geochimica et Cosmochimica Acta, 79: 20-40. https://doi.org/10.1016/j.gca.2011.11.035
      Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate‐Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095-2104. https://doi.org/10.1093/petroj/39.11‐12.2095
      Walter, B. F., Giebel, R. J., Steele‐MacInnis, M., et al., 2021. Fluids Associated with Carbonatitic Magmatism: a Critical Review and Implications for Carbonatite Magma Ascent. EarthScience Reviews, 215: 103509. https://doi.org/10.1016/j.earscirev.2021.103509
      Wan, Y., Wang, X. L., Chou, I. M., et al., 2021. Role of Sulfate in the Transport and Enrichment of REE in Hydrothermal Systems. Earth and Planetary Science Letters, 569: 117068. https://doi.org/10.1016/j.epsl.2021.117068
      Wan, Y., Wang, X. L., Hu, W. X., et al., 2017. In Situ Optical and Raman Spectroscopic Observations of the Effects of Pressure and Fluid Composition on Liquid‐Liquid Phase Separation in Aqueous Cadmium Sulfate Solutions (≤400 ℃, 50 MPa) with Geological and Geochemical Implications. Geochimica et Cosmochimica Acta, 211: 133-152. https://doi.org/10.1016/j.gca.2017.05.020
      Wang, J. T., Xiong, X. L., Zhang, L., et al., 2020a. Element loss to Pt Ccapsule in High Temperature and Pressure Experiments. American Mineralogist, 105(10): 1593-1597. https://doi.org/ 10.2138/am‐2020‐7580
      Wang, X. L., Wan, Y., Hu, W. X., et al., 2016. In Situ Observations of Liquid‐Liquid Phase Separation in Aqueous ZnSO4 Solutions at Temperatures up to 400 ℃: Implications for Zn2+‐SO42- Association and Evolution of Submarine Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 181: 126-143. https://doi.org/10.1016/j.gca. 2016.03.001 doi: 10.1016/j.gca.2016.03.001
      Wang, X. L., Chou, I. M., Hu, W. X., et al., 2011. Raman Spectroscopic Measurements of CO2 Density: Experimental Calibration with High‐Pressure Optical Cell (HPOC) and Fused Silica Capillary Capsule (FSCC) with Application to Fluid Inclusion Observations. Geochimica et Cosmochimica Acta, 75(14): 4080-4093. https://doi.org/10.1016/j.gca.2011.04.028
      Wang, X. S., Timofeev, A., Williams‐Jones, A. E., et al., 2019. An Experimental Study of the Solubility and Speciation of Tungsten in NaCl‐Bearing Aqueous Solutions at 250, 300, and 350 ℃. Geochimica et Cosmochimica Acta, 265: 313-329. https://doi.org/10.1016/j.gca.2019.09.013
      Wang, X. L., Chou, I. M., Hu, W. X., et al., 2013a. In Situ Observations of Liquid‐Liquid Phase Separation in Aqueous MgSO4 Solutions: Geological and Geochemical Implications. Geochimica et Cosmochimica Acta, 103: 1-10. https://doi.org/10.1016/j.gca.2012.10.044
      Wang, X. L., Hu, W. X., Chou, I. M, 2013b. Raman Spectroscopic Characterization on the OH Stretching Bands in NaCl‐Na2CO3‐Na2SO4‐CO2‐H2O Systems: Implications for the Measurement of Chloride Concentrations in Fluid Inclusions. Journal of Geochemical Exploration, 132: 111-119. https://doi.org/10.1016/j.gexplo.2013.06.006
      Wang, X. L., Qiu, Y., Lu, J. J., et al., 2020b. In Situ Raman Spectroscopic Investigation of the Hydrothermal Speciation of Tungsten: Implications for the Ore‐Forming Process. Chemical Geology, 532: 119299. https://doi.org/10.1016/j.chemgeo.2019.119299
      Wang, X. L., Wan, Y., Chou, I. M, 2021a. Fate of Sulfate in Seafloor Hydrothermal Systems: Insights from in Situ Observation of the Liquid‐Liquid Phase Separation in Hydrothermal Fluids. Solid Earth Sciences, 6(1): 1-11. https://doi.org/10.1016/j.sesci.2020.12.001
      Wang, X. S., Williams‐Jones, A. E., Hu, R. Z., et al., 2021b. The Role of Fluorine in Granite‐Related Hydrothermal Tungsten Ore Genesis: Results of Experiments and Modeling. Geochimica et Cosmochimica Acta, 292: 170-187. https://doi.org/10.1016/j.gca.2020.09.032
      Webster, J. D., Sintoni, M. F., de Vivo, B, 2009. The Partitioning Behavior of Cl, S, and H2O in Aqueous Vapor‐ ± Saline‐Liquid Saturated Phonolitic and Trachytic Melts at 200 MPa. Chemical Geology, 263(1/2/3/4): 19-36. https://doi.org/10.1016/j.chemgeo.2008.10.017
      Weidendorfer, D., Manning, C. E., Schmidt, M. W, 2020. Carbonate Melts in the Hydrous Upper Mantle. Contributions to Mineralogy and Petrology, 175(8): 1-17. https://doi.org/10.1007/s00410‐020‐01708‐x
      Xiong, X. L., Liu, X. C., Li, L., et al., 2020. The Partitioning Behavior of Trace Elements in Subduction Zones: Advances and Prospects. Scientia Sinica(Terrae), 50(12): 1785-1798 (in Chinese with English abstract).
      Yee, N., Koretsky, C., 2004. Who were the Ten Most Notable Geochemists of the 20th Century? The Geochemical News, 120: 6-14.
      Yuan, S. D., Williams‐Jones, A. E., Romer, et al., 2019. Protolith‐Related Thermal Controls on the Decoupling of Sn and W in Sn‐W Metallogenic Provinces: Insights from the Nanling Region, China. Economic Geology, 114: 1005-1012. https://doi.org/10.5382/econgeo.4669
      Zhao, P. L., Chu, X., Williams‐Jones, A. E., et al., 2022a. The Role of Phyllosilicate Partial Melting in Segregating Tungsten and Tin Deposits in W‐Sn Metallogenic Provinces. Geology, 50(1): 121-125. https://doi.org/10.1130/g49248.1
      Zhao, P. L., Zajacz, Z., Tsay, A., et al., 2022b. Magmatic‐Hydrothermal Tin Deposits Form in Response to Efficient Tin Extraction Upon Magma Degassing. Geochimica et Cosmochimica Acta, 316: 331-346. https://doi.org/10.1016/j.gca.2021.09.011
      Zhou, M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe‐Ti‐V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. https://doi.org/10.1093/petrology/egi054
      熊小林, 刘星成, 李立, 等, 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)

      Article views (918) PDF downloads(187) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return