Citation: | Zhao Haijun, Ma Fengshan, Li Zhiqing, Guo Jie, Zhang Jiaxiang, 2022. Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area. Earth Science, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289 |
Applying probabilistic seismic hazard evaluation model for seismic landslide hazard zonation is an effective method to handle the uncertainty of seismic source and spatial and temporal uncertainty of seismic-induced landslide evaluation in potential seismic area. Combined with theoretical analysis and actual ground motion parameters of Ludian earthquake and landslide hazards, the uncertainty of earthquake parameters and the geotechnical strength parameters in the proposed Newmark model were optimized and verified. Specifically, the strength attenuation effect of slope rock mass, the topographic amplification effect of seismic acceleration, and the fault zone effect were integrated into the Newmark model to optimize the model parameters. The optimized model shows a better effect of the slope topography and fault zone on the development of earthquake-induced landslide. Meanwhile, the calculation results have a higher agreement with the actual seismic landslide distribution in Ludian earthquake area. In addition, the prediction results show that the probability of seismic landslide will greatly increase in the Baogunao-Xiaohe fault, the Ludian-Zhaotong fault, and the Niulanjiang River valley for 2% probability of exceedance in 50 years. Therefore, it is necessary to take into account the dynamic response laws of earthquake parameters and geotechnical parameters in the Newmark model, which has great effect to improve the reliability of regional slope stability analysis.
Ai, H., Wu, H.G., Yang, T., et al., 2016. Experimental Study on the Shear Strength Parameters of Soil after Earthquake. China Sciencepaper, 11(13): 1544-1547, 1554(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2016.13.023
|
Chang, Z.F., Zhou, R.J., An, X.W., et al., 2014. Late Quaternary Activity of the Zhaotong-Ludian Fault Zone and Its Tectonic Implication. Seismology and Geology, 36(4): 1260-1279(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2014.04.025
|
Dai, B.Y., Wu, B., Chang, H., et al., 2017. Contrastive Analysis of Landslide between the Yunnan Ludian MS6.5 and the Jinggu MS6.6 Earthquake. Journal of Seismological Research, 40(1): 153-160(in Chinese with English abstract).
|
Dreyfus, D., Rathje, E.M., Jibson, R.W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41-54. https://doi.org/10.1016/j.enggeo.2013.05.015
|
Du, G.L., Zhang, Y.S., Yang, Z.H., et al., 2017. Estimation of Seismic Landslide Hazard in the Eastern Himalayan Syntaxis Region of Tibetan Plateau. Acta Geologica Sinica, 91(2): 658-668. doi: 10.1111/1755-6724.13124
|
Guo, M.Z., Cao, X.Y., Chang, Y.B., et al., 2016. Effect of Fault Fracture Zone on Ground Motion of Fault Site. Earthquake Resistant Engineering and Retrofitting, 38(6): 129-135(in Chinese with English abstract).
|
Hsieh, S.Y., Lee, C.T., 2011. Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(1): 34-42. http://www.ingentaconnect.com/content/el/00137952/2011/00000122/00000001/art00005
|
Huang, R.Q., Li, W.L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028
|
Jiang, H., Zhou, H., Gao, M.T., 2015. A Study on the Correlation of Ridge Line and Slope with Peak Ground Velocity Amplification Factor. Chinese Journal of Geophysics, 58(1): 229-237(in Chinese with English abstract).
|
Jibson, R.W., 1993. Predicting Earthquake-Induced Landslide Displacements Using Newmark's Sliding Block Analysis. Transportation Research Record, 1411: 9-17.
|
Jibson, R.W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2-4): 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013
|
Jibson, R.W., 2011. Methods for Assessing the Stability of Slopes during Earthquakes: A Retrospective. Engineering Geology, 122(1-2): 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017
|
Jibson, R.W., Harp, E.L., Michael, J.A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3-4): 271-289. https://doi.org/10.1016/s0013-7952(00)00039-9
|
Jin, K.P., Yao, L.K., Chen, M.D., 2019. Improvement of Newmark Model and Method Study of Risk Zoning for Earthquake Triggered Landslide. Journal of Disaster Prevention and Mitigation Engineering, 39(2): 301-308(in Chinese with English abstract).
|
Legg, M., Slosson, J., Eguchi, R., 1982. Seismic Hazard for Lifelines Vulnerability Analyses. In Proceedings, 3rd International Conference on Microzoning, Seattle, Washington, 1641-1652.
|
Lei, G.W., Yang, C.H., Wang, G.B., et al., 2016. The Development Law and Mechanical Causes of Fault Influenced Zone. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241(in Chinese with English abstract).
|
Li, X.J., Xu, W.J., Gao, M.T., 2021. Characteristics of Arias Intensity and Newmark Displacement of Strong Ground Motion in Lushan Earthquake. Acta Seismologica Sinica, 43(6): 768-786(in Chinese with English abstract).
|
Li, Z.S., 2003. The State of the Art of the Research on Seismic Landslide Hazard at Home and Abroad. Journal of Catastrophology, 18(4): 64-70(in Chinese with English abstract).
|
Liu, J.M., 2015. Probabilistic Seismic Landslide Hazard Zonation Method and Its Application (Dissertation). Institute of Geophysics, China Earthquake Administration, Beijing (in Chinese with English abstract).
|
Ministry of Housing and Urban-Rural Development of the People's Republic of China, State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, 2016. Specifications for Antiseismic Construction Design. China Architecture and Building Press, Beijing(in Chinese).
|
Newmark, N.M., 1965. Effects of Earthquakes on Dames and Embankments. Geotechnique, 15(2): 139-160. https://doi.org/10.1680/geot.1965.15.2.139
|
Parsons, T., Ji, C., Kirby, E., 2008. Stress Changes from the 2008 Wenchuan Earthquake and Increased Hazard in the Sichuan Basin. Nature, 454: 509-510. https://doi.org/10.1038/nature07177
|
Qi, S.W., 2007. Evaluation of the Permanent Displacement of Rock Mass Slope Considering Deterioration of Slide Surface during Earthquake. Chinese Journal of Geotechnical Engineering, 29(3): 452-457(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2007.03.024
|
Rathje, E.M., Saygili, G., 2009. Probabilistic Assessment of Earthquake-Induced Sliding Displacements of Natural Slopes. Bulletin of the New Zealand Society for Earthquake Engineering, 42(1): 18-27. https://doi.org/10.5459/bnzsee.42.1.18-27
|
Rodríguez-Peces, M.J., García-Mayordomo, J., Azañón, J.M., et al., 2014. GIS Application for Regional Assessment of Seismically Induced Slope Failures in the Sierra Nevada Range, South Spain, along the Padul Fault. Environmental Earth Sciences, 72(7): 2423-2435. https://doi.org/10.1007/s12665-014-3151-7
|
Romeo, R., 2000. Seismically Induced Landslide Displacements: A Predictive Model. Engineering Geology, 58(3-4): 337-351. https://doi.org/10.1016/s0013-7952(00)00042-9
|
Rovelli, A., Caserta, A., Marra, F., et al., 2002. Can Seismic Waves be Trapped Inside an Inactive Fault Zone? The Case Study of Nocera Umbra, Central Italy. Bulletin of the Seismological Society of America, 92(6): 2217-2232. https://doi.org/10.1785/0120010288
|
Schueller, S., Braathen, A., Fossen, H., et al., 2013. Spatial Distribution of Deformation Bands in Damage Zones of Extensional Faults in Porous Sandstones: Statistical Analysis of Field Data. Journal of Structural Geology, 52: 148-162. https://doi.org/10.1016/j.jsg.2013.03.013
|
State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China, 2015. Seismic Ground Motion Parameters Zonation Map of China(GB18306-2015). Standards Press of China, Beijing(in Chinese).
|
Wang, T., Wu, S.R., Shi, J.S., et al., 2015. Concepts and Mechanical Assessment Method for Seismic Landslide Hazard: A Review. Journal of Engineering Geology, 23(1): 93-104(in Chinese with English abstract).
|
Wang, Y., Yang, Y.D., Yan, X.S., et al., 2016. Characteristics and Causes of Super-Huge Secondary Geological Hazards Induced by M6.5 Ludian Earthquake in Yunnan. Journal of Catastrophology, 31(1): 83-86(in Chinese with English abstract).
|
Wei, Z.Y., He, H.L., Shi, F., et al., 2012. Slip Rate on the South Segment of Daliangshan Fault Zone. Seismology and Geology, 34(2): 282-293(in Chinese with English abstract).
|
Wen, X.Z., Du, F., Long, F., et al., 2011. Tectonic Dynamics and Correlation of Major Earthquake Sequences of the Xiaojiang and Qujiang-Shiping Fault Systems, Yunnan, China. Science China: Earth Sciences, 54(10): 1563-1575. doi: 10.1007/s11430-011-4231-0
|
Weng, J.Q., Zeng, L.B., Lü, W.Y., et al., 2020. Width of Stress Disturbed Zone near Fault and Its Influencing Factors. Journal of Geomechanics, 26(1): 39-47(in Chinese with English abstract).
|
Xu, C., Dai, F.C., Xu, X.W., 2010. Wenchuan Earthquake-Induced Landslides: An Overview. Geological Review, 56(6): 860-874(in Chinese with English abstract).
|
Xu, G.X., Yao, L.K., Li, C.H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131-1136(in Chinese with English abstract).
|
Yin, Z.Q., Xu, Y.Q., Chen, H.Q., et al., 2016. The Development and Distribution Characteristics of Geohazards Induced by August 3, 2014 Ludian Earthquake and Comparison with Jinggu and Yingjiang Earthquakes. Acta Geologica Sinica, 90(6): 1086-1097(in Chinese with English abstract).
|
Yuan, R. M, Deng, Q.H., Dickson, C., et al., 2016. Newmark Displacement Model for Landslides Induced by the 2013 Ms 7.0 Lushan Earthquake, China. Frontiers of Earth Science, 10(4): 740-750. https://doi.org/10.1007/s11707-015-0547-y
|
Zhang, H.J., 2011. Soil Mechanics. China Machine Press, Beijing, 93-96(in Chinese).
|
Zhang, Y.S., Guo, C.B., Yang, Z.H., et al., 2018. Landslide Characteristics and Hazard Evaluation in the Eastern Margin of Qinghai-Tibet Plateau with Sharp Topographic Changes. China University of Geosciences Press, Wuhan(in Chinese).
|
Zhang, Y.S., Guo, C.B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract).
|
Zhang, Y.S., Yang, Z.H., Guo, C.B., et al., 2017. Predicting Landslide Scenes under Potential Earthquake Scenarios in the Xianshuihe Fault Zone, Southwest China. Journal of Mountain Science, 14(7): 1262-1278. https://doi.org/10.1007/s11629-017-4363-6
|
艾挥, 吴红刚, 杨涛, 等, 2016. 震后土体抗剪强度参数试验研究. 中国科技论文, 11(13): 1544-1547. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201613023.htm
|
常祖峰, 周荣军, 安晓文, 等, 2014. 昭通-鲁甸断裂晚第四纪活动及其构造意义. 地震地质, 36(4): 1260-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404025.htm
|
代博洋, 吴波, 常昊, 等, 2017.2014年云南鲁甸MS 6.5与云南景谷MS 6.6地震滑坡灾害对比分析. 地震研究, 40(1): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201701019.htm
|
郭明珠, 曹鑫雨, 常议彬, 等, 2016. 断层破碎带对场地地震动的影响. 工程抗震与加固改造, 38(6): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201606019.htm
|
黄润秋, 李为乐, 2008. "5·12" 汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
|
蒋涵, 周红, 高孟潭, 2015. 山脊线与坡度和峰值速度放大系数的相关性研究. 地球物理学报, 58(1): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501020.htm
|
金凯平, 姚令侃, 陈秒单, 2019. Newmark模型的修正以及地震触发崩塌滑坡危险性区划方法研究. 防灾减灾工程学报, 39(2): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201902017.htm
|
雷光伟, 杨春和, 王贵宾, 等, 2016. 断层影响带的发育规律及其力学成因. 岩石力学与工程学报, 35(2): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602004.htm
|
李雪婧, 徐伟进, 高孟潭, 2021. 芦山地震强地面运动之阿里亚斯强度及Newmark位移特征研究. 地震学报, 43(6): 768-786. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202106008.htm
|
李忠生, 2003. 国内外地震滑坡灾害研究综述. 灾害学, 18(4): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200304013.htm
|
刘甲美, 2015. 概率地震滑坡危险性区划方法及应用(博士学位论文). 北京: 中国地震局地球物理研究所.
|
祁生文, 2007. 考虑结构面退化的岩质边坡地震永久位移研究. 岩土工程学报, 29(3): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703024.htm
|
王涛, 吴树仁, 石菊松, 等, 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501019.htm
|
王宇, 杨迎冬, 晏祥省, 等, 2016. 云南鲁甸6.5级地震次生特大地质灾害的特征及原因. 灾害学, 31(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511024.htm
|
魏占玉, 何宏林, 石峰, 等, 2012. 大凉山断裂带南段滑动速率估计. 地震地质, 34(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201202008.htm
|
翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素. 地质力学学报, 26(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001005.htm
|
徐光兴, 姚令侃, 李朝红, 等, 2012. 基于汶川地震强震动记录的边坡永久位移预测模型. 岩土工程学报, 34(6): 1131-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206027.htm
|
许冲, 戴福初, 徐锡伟, 2010. 汶川地震滑坡灾害研究综述. 地质论评, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
|
殷志强, 徐永强, 陈红旗, 等, 2016.2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究. 地质学报, 90(6): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201606004.htm
|
张怀静, 2011. 土力学. 北京: 机械工业出版社, 93-96.
|
张永双, 郭长宝, 杨志华, 等, 2018. 青藏高原东缘地形急变带滑坡灾害特征与危险性研究. 武汉: 中国地质大学出版社.
|
张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2015. 中国地震动参数区划图(GB18306-2015). 北京: 中国标准出版社.
|
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2016. 建筑抗震设计规范(GB50011-2010). 北京: 中国建筑工业出版社.
|