• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 12
    Dec.  2023
    Turn off MathJax
    Article Contents
    Li Jiaxian, Hu Tianyang, Liu Lei, 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293
    Citation: Li Jiaxian, Hu Tianyang, Liu Lei, 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293

    Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province

    doi: 10.3799/dqkx.2022.293
    • Received Date: 2022-03-07
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • In order to restrict the age and mineralization of the Yuanjiacun iron deposit and reveal its implications for the paleomarine environment, it determined the detrital zircon U-Pb chronology, major and trace elements of whole rock and trace elements of hematite for BIFs samples which collected from the Yuanjiacun iron deposit. Its detrital zircon U-Pb age constrains the sedimentary age of Yuanjiacun iron ore between 2 200 and 2 235 Ma. The characteristics of major and trace elements indicate that it is a relatively pure sediment and formed by the mixing of seawater and high temperature hydrothermal fluid. And the river input may be one of iron sources during the deposition process. Yuanjiacun iron deposit was formed at the end of the GOE. There are obvious grouping of REE distribution pattern characteristics in Yuanjiacun iron deposit, as well as negative Ce anomaly and slight positive Ce anomaly. This agrees with a reductive and oxidative environment, indicating that the paleomarine environment at that time was characterized by redox stratification. These features suggest a dramatic change in the paleo-marine environment after the GOE, with some degree of oxidation occurring in seawater and shifting from the original single reducing environment to a redox stratified state.

       

    • loading
    • Alexander, B.W., Bau, M., Andersson, P., et al., 2008. Continentally-Derived Solutes in Shallow Archean Seawater: Rare Earth Element and Nd Isotope Evidence in Iron Formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2): 378-394. https://doi.org/10.1016/j.gca.2007.10.028
      Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8
      Barley, M.E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
      Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      Bau, M., Koschinsky, A., 2009. Oxidative Scavenging of Cerium on Hydrous Fe Oxide: Evidence from the Distribution of Rare Earth Elements and Yttrium between Fe Oxides and Mn Oxides in Hydrogenetic Ferromanganese Crusts. Geochemical Journal, 43(1): 37-47. https://doi.org/10.2343/geochemj.1.0005
      Bolhar, R., Kamber, B.S., Moorbath, S., et al., 2004. Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures. Earth and Planetary Science Letters, 222(1): 43-60. https://doi.org/10.1016/j.epsl.2004.02.016
      Dong, H., 2018. Study on Mineralogical and Geochemical Characteristics of Different Genesis Types of Hematite in the Middle-Lower Yangtze River Valley Metallogenic Belt (Dissertation). Hefei University of Technology, Hefei(in Chinese with English abstract).
      Elderfield, H.R., Whitfield, M., Burton, J.D., 1988. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 325(1583): 105-126. https://doi.org/10.1098/rsta.1988.0046
      Frei, R., Gaucher, C., Poulton, S.W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461: 250-253. https://doi.org/10.1038/nature08266
      Geng, Y.S., Wan, Y.S., Shen, Q.H., et al., 2000. Chronological Framework of the Early Precambrian Important Events in the Luliang Area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2000.03.003
      Geng, Y.S., Wan, Y.S., Yang, C.H., 2003. The Palaeoproterozoic Rift-Type Volcanism in Luliangshan Area, Shanxi Province, and Its Geological Significance. Acta Geosicientia Sinica, 24(2): 97-104(in Chinese with English abstract).
      German, C.R., Elderfield, H., 1989. Rare Earth Elements in Saanich Inlet, British Columbia, a Seasonally Anoxic Basin. Geochimica et Cosmochimica Acta, 53(10): 2561-2571. https://doi.org/10.1016/0016-7037(89)90128-2
      German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. https://doi.org/10.1016/0016-7037(91)90055-a
      German, C.R., Masuzawa, T., Greaves, M.J., et al., 1995. Dissolved Rare Earth Elements in the Southern Ocean: Cerium Oxidation and the Influence of Hydrography. Geochimica et Cosmochimica Acta, 59(8): 1551-1558. https://doi.org/10.1016/0016-7037(95)00061-4
      Gross, G., 1980. A Classification of Iron Formations Based on Depositional Environments. Canadian Mineralogist, 18: 215-222. https://doi.org/10.1016/s0304-3991(79)80026-1
      Heimann, A., Johnson, C.M., Beard, B.L., et al., 2010. Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5 Ga Marine Environments. Earth and Planetary Science Letters, 294(1-2): 8-18. https://doi.org/10.1016/j.epsl.2010.02.015
      Hou, K.J., 2014. Formation Mechanism of Different Types of Banded Iron Formations of China: Constraints from Iron, Silicon, Oxygen and Sulfur Isotopes (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Hou, K.J., Li, Y.H., Gao, J.F., et al., 2014. Geochemistry and Si-O-Fe Isotope Constraints on the Origin of Banded Iron Formations of the Yuanjiacun Formation, Lüliang Group, Shanxi, China. Ore Geology Reviews, 57: 288-298. https://doi.org/10.1016/j.oregeorev.2013.09.018
      Huston, D.L., Logan, G.A., 2004. Barite, BIFs and Bugs: Evidence for the Evolution of the Earth's Early Hydrosphere. Earth and Planetary Science Letters, 220(1-2): 41-55. https://doi.org/10.1016/s0012-821x(04)00034-2
      Isley, A.E., Abbott, D.H., 1999. Plume-Related Mafic Volcanism and the Deposition of Banded Iron Formation. Journal of Geophysical Research: Solid Earth, 104(B7): 15461-15477. https://doi.org/10.1029/1999jb900066
      James, H.L., 1954. Sedimentary Facies of Iron-Formation. Economic Geology, 49(3): 235-293. https://doi.org/10.2113/gsecongeo.49.3.235
      Klein, C., Beukes, N.J., 1989. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7): 1733-1774. https://doi.org/10.2113/gsecongeo.84.7.1733
      Konhauser, K.O., Planavsky, N.J., Hardisty, D.S., et al., 2017. Iron Formations: A Global Record of Neoarchaean to Palaeoproterozoic Environmental History. Earth-Science Reviews, 172: 140-177. https://doi.org/10.1016/j.earscirev.2017.06.012
      Li, C.M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174(in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2009.03.001
      Li, W.Q., Beard, B.L., Johnson, C.M., 2015. Biologically Recycled Continental Iron is a Major Component in Banded Iron Formations. Proceedings of the National Academy of Sciences of the United States of America, 112(27): 8193-8198. https://doi.org/10.1073/pnas.1505515112
      Li, Y.H., Hou, K.J., Wan, D.F., et al., 2014. Precambrian Banded Iron Formations in the North China Craton: Silicon and Oxygen Isotopes and Genetic Implications. Ore Geology Reviews, 57: 299-307. https://doi.org/10.1016/j.oregeorev.2013.09.011
      Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2014. Geochronological and Geochemical Constraints on the Lüliang Group in the Lüliang Complex: Implications for the Tectonic Evolution of the Trans-North China Orogen. Lithos, 198-199: 298-315. https://doi.org/10.1016/j.lithos.2014.04.003
      Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2021. The Timing of Crustal Thickening Constrained by Metamorphic Zircon U-Pb-Hf and Trace Element Signatures in the Lüliang Complex, Trans-North China Orogen. Precambrian Research, 367: 106440. https://doi.org/10.1016/j.precamres.2021.106440
      Liu, J.Z., Zhang, F.Q., Ouyang, Z.Y., et al., 2001. Geochemistry and Geochronology of Metamorphic Basic Volcanic Rocks in Luliangshanjiehekou Group, Shanxi Province. Science China: Earth Sciences, 31(2): 111-118(in Chinese).
      Liu, S.W., Pan, Y.M., Xie, Q.L., et al., 2005. Geochemistry of the Paleoproterozonic Nanying Granitic Gneisses in the Fuping Complex: Implications for the Tectonic Evolution of the Central Zone, North China Craton. Journal of Asian Earth Sciences, 24(5): 643-658. https://doi.org/10.1016/j.jseaes.2003.10.010
      Liu, S.W., Zhang, J., Li, Q.G., et al., 2012. Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190. https://doi.org/10.1016/j.precamres.2011.07.006
      Liu, S.W., Zhao, G.C., Wilde, S.A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205-224. https://doi.org/10.1016/j.precamres.2006.04.003
      McLennan, S.M., 1989. Chapter 7: Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Geochemistry and Mineralogy of Rare Earth Elements. Berlin, Boston, 169-200. https://doi.org/10.1515/9781501509032-010
      Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1-2): 329-340. https://doi.org/10.1016/s0012-821x(97)00034-4
      Ohmoto, H., Watanabe, Y., Yamaguchi, K.E., et al., 2006. Chemical and Biological Evolution of Early Earth: Constraints from Banded Iron Formations. Memoir of the Geological Society of America, 198: 291-331 https://doi.org/10.1130/2006.1198(17)
      Planavsky, N., Bekker, A., Rouxel, O.J., et al., 2010. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition. Geochimica et Cosmochimica Acta, 74(22): 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021
      Slack, J.F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. https://doi.org/10.1016/j.epsl.2006.12.018
      Tong, Y.P., 2019. Geological Characteristics and Chronology of the Yuanjiacun Iron Ore Deposit in Shanxi Province(Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Walker, R.J., Horan, M.F., Shearer, C.K., et al., 2004. Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion. Earth and Planetary Science Letters, 224(3-4): 399-413. https://doi.org/10.1016/j.epsl.2004.05.036
      Wan, Y.S., Geng, Y.S., Shen, Q.H., et al., 2000. Khondalite Series—Geochronology and Geochemistry of the Jiehekou Group in Lüliang Area, Shanxi Province. Acta Petrologica Sinica, 16(1): 49-58(in Chinese with English abstract).
      Wang, C.L., Zhang, L.C., Lan, C.Y., et al., 2014a. Petrology and Geochemistry of the Wangjiazhuang Banded Iron Formation and Associated Supracrustal Rocks from the Wutai Greenstone Belt in the North China Craton: Implications for Their Origin and Tectonic Setting. Precambrian Research, 255: 603-626. https://doi.org/10.1016/j.precamres.2014.08.002
      Wang, C.L., Zhang, L.C., Lan, C.Y., et al., 2014b. Rare Earth Element and Yttrium Compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang Area and Their Implications for the Great Oxidation Event (GOE). Science China: Earth Sciences, 57(10): 2469-2485. https://doi.org/10.1007/s11430-014-4896-2
      Wang, H.C., Miao, P.S., Kang, J.L., et al., 2020. New Evidence for the Formation Age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313-2330 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.03
      Wang, J.Y., Li, Z.D., Li, G.Y., et al., 2020. Formation Age, Geochemical Signatures and Geological Significance of the Hejiao Iron Deposit, Inner Mongolia. Earth Science, 45(6): 2135-2151(in Chinese with English abstract).
      Wheat, C.G., Mottl, M.J., Rudnicki, M., 2002. Trace Element and REE Composition of a Low-Temperature Ridge-Flank Hydrothermal Spring. Geochimica et Cosmochimica Acta, 66(21): 3693-3705. https://doi.org/10.1016/s0016-7037(02)00894-3
      Wilde, S.A., Zhao, G.C., 2005. Archean to Paleoproterozoic Evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519-522. https://doi.org/10.1016/j.jseaes.2004.06.004
      Yao, P.H., 1993. China Iron Mine Chronicle. Metallurgical Industry Press, Beijing(in Chinese).
      Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 1997. Geochemical Characteristics and Petrogenesis of the Early Proterozoic Bimodal Volcanic Rocks from Lyuliang Group, Shanxi Province. Acta Petrologica Sinica, 13(1): 59-70(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.1997.01.005
      Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 2004. Paleoproterozoic Granitic Magmatism and Metamorphism in Middle Part of Lüliang Range, Shanxi Province. Geological Journal of China Universities, 10(4): 500-513(in Chinese with English abstract).
      Zhai, M.G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.004
      Zhai, M.G., 2011. Craton and the Formation of North China Land Block. Science China: Earth Sciences, 41(8): 1037-1046 (in Chinese).
      Zhang, L.C., Peng, Z.D., Zhai, M.G., et al., 2020. Tectonic Setting and Genetic Relationship between BIF and VMS in the Qingyuan Neoarchean Greenstone Belt, Northern North China Craton. Earth Science, 45(1): 1-16(in Chinese with English abstract).
      董赫, 2018. 长江中下游成矿带不同成因类型赤铁矿矿物学和地球化学特征研究(硕士学位论文). 合肥: 合肥工业大学.
      耿元生, 万渝生, 沈其韩, 等, 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74(3): 216-223.
      耿元生, 万渝生, 杨崇辉, 2003. 吕梁地区古元古代的裂陷型火山作用及其地质意义. 地球学报, 24(2): 97-104.
      侯可军, 2014. 我国不同类型条带状硅铁建造形成机制的铁硅氧硫同位素地球化学制约(博士学位论文). 北京: 中国地质大学.
      李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174.
      刘建忠, 张福勤, 欧阳自远, 等, 2001. 山西吕梁山界河口群变质基性火山岩的地球化学及年代学研究. 中国科学(D辑), 31(2): 111-118.
      佟悦鹏, 2019. 山西袁家村铁矿矿床地质特征及年代学研究(硕士学位论文). 长春: 吉林大学.
      万渝生, 耿元生, 沈其韩, 等, 2000. 孔兹岩系: 山西吕梁地区界河口群的年代学和地球化学. 岩石学报, 16(1): 49-58.
      王惠初, 苗培森, 康健丽, 等, 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313-2330.
      王佳营, 李志丹, 李光耀, 等, 2020. 内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义. 地球科学, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211
      姚培慧, 1993. 中国铁矿志. 北京: 冶金工业出版社.
      于津海, 王德滋, 王赐银, 等, 1997. 山西吕梁群和其主变质作用的锆石U-Pb年龄. 地质论评, 43(4): 403-408. doi: 10.3321/j.issn:0371-5736.1997.04.009
      于津海, 王德滋, 王赐银, 等, 2004. 山西吕梁山中段元古代花岗质岩浆活动和变质作用. 高校地质学报, 10(4): 500-513.
      张连昌, 彭自栋, 翟明国, 等, 2020. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系. 地球科学, 45(1): 1-16. doi: 10.3799/dqkx.2019.224
    • dqkxzx-48-12-4404-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (864) PDF downloads(104) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return