Citation: | Li Xiongyan, Qin Ruibao, 2023. Method of Fracture Characterization and Productivity Prediction of 19⁃6 Buried⁃Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487. doi: 10.3799/dqkx.2022.299 |
Ahriche, I., Tiab, D., 2011. The Effect of Fracture Conductivity and Fracture Storativity on Relative Permeability in Dual Porosity Reservoir. SPE71088.
|
Cheng, M. L., Leal, M. A., McNaughton, D., 1999. Productivity Prediction from Well Logs in Variable Grain Size Reservoir Cretaceous Qishn Formation, Republic of Yemen. Log Analyst, 40(1): 24-32.
|
Chen, G., Pan, B. Z., 2010. Inversion Method of Permeability Using Stoneley Wave. Journal of Jilin University (Earth Science Edition), 40(S1): 77-81(in Chinese with English abstract).
|
Fan, T. E., Niu, T., Fan, H. J., et al., 2021. Geological Model and Development Strategy of Archean Burilled Hill Reservoir in BZ19⁃6 Condensate Field. China Offshore Oil and Gas, 33(3): 85-92(in Chinese with English abstract).
|
Herron, M. M., 1987. Estimating the Intrinsic Permeability of Clasic Sediments from Geochemical Data. SPWLA 28th Annual Logging Symposium, London.
|
Hou, L. H., Lin, C. Y., Wang, J. H., et al., 2003. A Method for Predicting Oil Productivity of Oil⁃Bearing Bed in Exploration Period. Journal of China University of Petroleum (Edition of Natural Science), 27(1): 11-13(in Chinese with English abstract). doi: 10.3321/j.issn:1000-5870.2003.01.005
|
Huang, J. X., Peng, S. M., Wang, X. J., et al., 2006. Applications of Imaging Logging Data in the Research of Fracture and Ground Stress. Acta Petrolei Sinica, 27(6): 65-69(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2006.06.014
|
Hou, M. C., Cao, H. Y., Li, H. Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried⁃Hill Reservoirs in the BZ19⁃6 Structural Belt, Bohai Sea Area. Natural Gas Industry B, 6(4): 305-316. https://doi.org/10.1016/j.ngib.2019.01.011
|
Jamiolahmady, M., Mahdiyar, H., Ghahri, P., et al., 2011. A New Method for Productivity Calculation of Perforated Wells in Gas Condensate Reservoirs. Journal of Petroleum Science and Engineering, 77(3/4): 263-273. https://doi.org/10.1016/j.petrol.2011.03.005
|
Kang, K., Zhao, L., Luo, X. B., et al., 2021. A New Productivity Evaluation Method for Fractured Buried Hill Gas Reservoirs and Its Application. China Offshore Oil and Gas, 33(3): 100-106(in Chinese with English abstract).
|
Liu, R. L., Xie, F., Xiao, C. W., et al., 2017. Extracting Fracture⁃Vug Plane Porosity from Electrical Imaging Logging Data Using Dissection of Wavelet⁃Transform⁃Based Image. Chinese Journal of Geophysics, 60(12): 4945-4955(in Chinese with English abstract). doi: 10.6038/cjg20171233
|
Li, N., Wang, K. W., Liu, P., et al., 2021. Experimental Study on Attenuation of Stoneley Wave under Different Fracture Factors. Petroleum Exploration and Development, 48(2): 299-307. https://doi.org/10.1016/S1876-3804(21)60024-1
|
Liu, M. X., Hao, F., Wang, Q., et al., 2021. Light Hydrocarbon Geochemical Characteristics and Geological Significance of Buried Hill Condensate Oil in Bozhong 19⁃6 Structural Belt. Earth Science, 46(10): 3645-3656(in Chinese with English abstract).
|
Mao, Z. Q., Li, J. F., 2000. Method and Models for Productivity Prediction of Hydrocarbon Reservoirs. Acta Petrolei Sinica, 21(5): 58-61, 3(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2000.05.012
|
Nian, T., Wang, G. W., Xiao, C. W., et al., 2016. Determination of In⁃Situ Stress Orientation and Subsurface Fracture Analysis from Image⁃Core Integration: an Example from Ultra⁃Deep Tight Sandstone (BSJQK Formation) in the Kelasu Belt, Tarim Basin. Journal of Petroleum Science and Engineering, 147: 495-503. https://doi.org/10.1016/j.petrol.2016.09.020
|
Nian, T., Jiang, Z. X., Song, H. Y., 2018. Borehole Image Electrofacies with a Comparative Carbonate Petrography Analysis: an Outcrop Well Study Associated with Reservoir Application in the Ordovician Tarim Basin. Interpretation, 6(3): T723-T737. https://doi.org/10.1190/int-2018-0027.1
|
Nian, T., Wang, G. W., Tan, C. Q., et al., 2021. Hydraulic Apertures of Barren Fractures in Tight⁃Gas Sandstones at Depth: Image⁃Core Calibration in the Lower Cretaceous Bashijiqike Formation, Tarim Basin. Journal of Petroleum Science and Engineering, 196: 108016. https://doi.org/10.1016/j.petrol.2020.108016
|
Nian, T., Wang, G. W., Fan, X. Q., et al., 2021. Advances in Fracture and Vug Interpretation Using Microresistivity Imaging Logs. Geological Review, 67(2): 476-488(in Chinese with English abstract).
|
Pan, B. Z., Fang, C. H., Guo, Y. H., et al., 2018. Logging Evaluation and Productivity Prediction of Sulige Tight Sandstone Reservoirs Based on Petrophysics Transformation Models. Chinese Journal of Geophysics, 61(12): 5115-5124(in Chinese with English abstract). doi: 10.6038/cjg2018L0724
|
Qin, R. B., Zhang, L., Zhou, G. Y., 2015. A New Logging Method for Evaluating Fracture Porosity and Permeability in Buried Hill Oilfields. China Offshore Oil and Gas, 27(3): 31-37, 78(in Chinese with English abstract).
|
Qu, H. Z., Zhang, F. X., Wang, Z. Y., et al., 2016. Quantitative Fracture Evaluation Method Based on Core⁃Image Logging: a Case Study of Cretaceous Bashijiqike Formation in Ks2 Well Area, Kuqa Depression, Tarim Basin, NW China. Petroleum Exploration and Development, 43(3): 465-473(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30054-4
|
Qin, R. B., Cao, J. J., Li, X. Y., et al., 2021. Acoustic Logging Evaluation Method for Fractures in Metamorphic Buried Hill Reservoir and Its Application in BZ19⁃6 Gas Field. China Offshore Oil and Gas, 33(3): 77-84(in Chinese with English abstract).
|
Shi, X. L., Cui, Y. J., Xu, W. K., et al., 2020. Formation Permeability Evaluation and Productivity Prediction Based on Mobility from Pressure Measurement while Drilling. Petroleum Exploration and Development, 47(1): 146-153(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60013-1
|
Tan, T. D., 1986. Exploration of the Productivity Prediction Method for Fractured Oil and Gas Reservoirs. Well Logging Technology, 10(4): 1-9(in Chinese with English abstract).
|
Wei, J., Li, J. P., Yang, X. B., et al., 2021. Quantitative Evaluation for Reservoir Identification of Vug Fractured Reservoir in Right Bank of Amu Darya Basin. Well Logging Technology, 45(2): 156-161(in Chinese with English abstract).
|
Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19⁃6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 27-40. https://doi.org/10.1016/S1876-3804(19)30003-5
|
Yang, F., Zhu, C. Q., Wang, X. H., et al., 2013. A Capacity Prediction Model for the Low Porosity Fractured Reservoirs in the Kuqa Foreland Basin, NW China. Petroleum Exploration and Development, 40(3): 367-371. https://doi.org/10.1016/S1876-3804(13)60044-0
|
Yang, B., Zhang, C. G., Cai, M., et al., 2019. Research on Evaluation Method of Fracture Permeability Based on Stoneley Wave EnergyAttenuation. Progress in Geophysics, 34(3): 1127-1131(in Chinese with English abstract).
|
Zheng, X. R., Li, X. B., Li, X. L., 2015. New Prediction Method for Fracture Reservoir Productivity. Fault-Block Oil & Gas Field, 22(6): 744-746, 751(in Chinese with English abstract).
|
Zhang, Z. H., Du, S. K., Chen, H. Y., et al., 2018. Quantitative Characterization of Volcanic Fracture Distribution Based on Electrical Imaging Logging: A Case Study of Carboniferous in Dixi Area, Junggar Basin. Acta Petrolei Sinica, 39(10): 1130-1140(in Chinese with English abstract). doi: 10.7623/syxb201810005
|
Zhuang, C. X., Li, Y. H., Kong, F. T., et al., 2019. Formation Permeability Estimation Using Stoneley Waves from Logging while Drilling: Theory, Method, and Application. Chinese Journal of Geophysics, 62(11): 4482-4492(in Chinese with English abstract). doi: 10.6038/cjg2019N0122
|
Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548(in Chinese with English abstract).
|
陈刚, 潘保芝, 2010. 利用斯通利波反演地层渗透率. 吉林大学学报(自然科学版), 40(S): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2010S1021.htm
|
范廷恩, 牛涛, 范洪军, 等, 2021. 渤中19⁃6凝析气田太古界潜山储层地质模式及开发策略. 中国海上油气, 33(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103009.htm
|
侯连华, 林承焰, 王京红, 等, 2003. 含油层早期产能预测方法. 中国石油大学学报(自然科学版), 27(1): 11-13. doi: 10.3321/j.issn:1000-5870.2003.01.005
|
黄继新, 彭仕宓, 王小军, 等, 2006. 成像测井资料在裂缝和地应力研究中的应用. 石油学报, 27(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606013.htm
|
侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19⁃6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
|
康凯, 赵林, 罗宪波, 等, 2021. 裂缝性潜山气藏产能评价新方法及其应用. 中国海上油气, 33(3): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103011.htm
|
刘瑞林, 谢芳, 肖承文, 等, 2017. 基于小波变换图像分割技术的电成像测井资料裂缝、孔洞面孔率提取方法. 地球物理学报, 60(12): 4945-4955. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712033.htm
|
李宁, 王克文, 刘鹏, 等, 2021. 不同裂缝条件下斯通利波幅度衰减实验. 石油勘探与开发, 48(2): 258-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102004.htm
|
刘梦醒, 郝芳, 王奇, 等, 2021. 渤中19⁃6潜山构造带凝析油中轻烃地球化学特征及意义. 地球科学, 46(10): 3645-3656. doi: 10.3799/dqkx.2021.033
|
毛志强, 李进福, 2000. 油气层产能预测方法及模型. 石油学报, 21(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200005016.htm
|
年涛, 王贵文, 范旭强, 等, 2021. 成像测井缝洞解释评价研究进展. 地质论评, 67(2): 476-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102019.htm
|
潘保芝, 房春慧, 郭宇航, 等, 2018. 基于岩石物理转换模型的苏里格致密砂岩储层测井评价与产能预测. 地球物理学报, 61(12): 5115-5124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812035.htm
|
秦瑞宝, 张磊, 周改英, 2015. 潜山油田裂缝孔隙度和渗透率测井评价新方法. 中国海上油气, 27(3): 31-37, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503005.htm
|
屈海洲, 张福祥, 王振宇, 等, 2016. 基于岩心-电成像测井的裂缝定量表征方法——以库车坳陷ks2区块白垩系巴什基奇克组砂岩为例. 石油勘探与开发, 43(3): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603015.htm
|
秦瑞宝, 曹景记, 李雄炎, 等, 2021. 变质岩潜山储层裂缝声波测井评价方法及其在渤中19⁃6气田的应用. 中国海上油气, 33(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103008.htm
|
时新磊, 崔云江, 许万坤, 等, 2020. 基于随钻测压流度的地层渗透率评价方法及产能预测. 石油勘探与开发, 47(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001015.htm
|
谭廷栋, 1986. 裂缝性油气层产能预测方法的探索. 测井技术, 10(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS198604000.htm
|
魏娇, 李剑平, 杨雪冰, 等, 2021. 阿姆河右岸缝洞储层识别多尺度定量评价方法. 测井技术, 45(2): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202102012.htm
|
徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19⁃6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
|
杨锋, 朱春启, 王新海, 等, 2013. 库车前陆盆地低孔裂缝性砂岩产能预测模型. 石油勘探与开发, 40(3): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303013.htm
|
杨博, 章成广, 蔡明, 等, 2019. 基于斯通利波能量衰减的裂缝渗透性评价方法研究. 地球物理学进展, 34(3): 1127-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903033.htm
|
郑学锐, 李贤兵, 李香玲, 2015. 一种裂缝性油藏产能预测新方法. 断块油气田, 22(6): 744-746, 751. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506013.htm
|
张兆辉, 杜社宽, 陈华勇, 等, 2018. 基于电成像测井的火山岩裂缝分布定量表征——以准噶尔盆地滴西地区石炭系为例. 石油学报, 39(10): 1130-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810005.htm
|
庄春喜, 李杨虎, 孔凡童, 等, 2019. 随钻斯通利波测井反演地层渗透率的理论、方法及应用. 地球物理学报, 62(11): 4482-4492. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201911040.htm
|
周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249
|