• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Wu Xiang, Gao Chunxiao, Wang Chao, 2022. Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology. Earth Science, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300
    Citation: Wu Xiang, Gao Chunxiao, Wang Chao, 2022. Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology. Earth Science, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300

    Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology

    doi: 10.3799/dqkx.2022.300
    • Received Date: 2022-06-22
    • Publish Date: 2022-09-25
    • State⁃of⁃art high⁃temperature⁃pressure apparatus and characterization technology are the key way to know the occurrence state of deep earth materials and their effects on geological processes. In the past twenty years, lots of high⁃level high temperature and high pressure experimental platforms were set up in domestic universities and institutes of Earth sciences, which have diverse apparatus covering the temperature⁃pressure conditions of the Earth's surface to the core and various in⁃situ/ex⁃situ characterization techniques. The important progresses of experimental geosciences have been obtained in high⁃pressure mineral physics, experimental petrology and geochemistry etc. Innovative development of devices and technologies is one of key drivers for the basic theory innovations in the country's biggest strategic needs (such as deep earth, deep sea, deep space and Earth system science). Here we review the developed high⁃temperature⁃pressure apparatus and technologies, their challenges, and look into future perspectives.

       

    • loading
    • Borchert, M., Wilke, M., Schmidt, C., et al., 2010. Partitioning of Ba, La, Yb and Y between Haplogranitic Melts and Aqueous Solutions: an Experimental Study. Chemical Geology, 276(3/4): 225-240. https://doi.org/10.1016/j.chemgeo.2010.06.009
      Chou, I. M., Wang, R. H., Fang, J., 2021. In Situ Redox Control and Raman Spectroscopic Characterization of Solutions below 300 ℃. Geochemical Perspectives Letters, 20: 1-5.
      Dewaele, A., Loubeyre, P., Occelli, F., et al., 2018. Toroidal Diamond Anvil Cell for Detailed Measurements under Extreme Static Pressures. Nature Communications, 9: 2913. https://doi.org/10.1038/s41467⁃018⁃05294⁃2
      Dubrovinskaia, N., Dubrovinsky, L., Solopova, N. A., et al., 2016. Terapascal Static Pressure Generation with Ultrahigh Yield Strength Nanodiamond. Science Advances, 2(7): e1600341. https://doi.org/10.1126/sciadv.1600341
      Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B., et al., 2012. Implementation of Micro⁃Ball Nanodiamond Anvils for High⁃Pressure Studies above 6 Mbar. Nature Communications, 3: 1163. https://doi.org/10.1038/ncomms2160
      Duffy, T. S., Smith, R. F., 2019. Ultra⁃High Pressure Dynamic Compression of Geological Materials. Frontiers in Earth Science, 7: 23. doi: 10.3389/feart.2019.00023
      Eyles, V. A., 1961. Sir James Hall (1761⁃1832). Endeavour, 20: 210-213.
      Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen⁃Depleted Liquid Outer Core of the Earth. Nature, 479(7374): 513-516. https://doi.org/10.1038/nature10621
      Huang, Q., Yu, D. L., Xu, B., et al., 2014. Nanotwinned Diamond with Unprecedented Hardness and Stability. Nature, 510(7504): 250-253. https://doi.org/10.1038/nature13381
      Huang, S. X., Wu, X., Qin, S, 2016. Research Progress on in Situ Experimental and Theoretical Simulations of Element Partitioning under High Temperature and High Pressure. Rock and Mineral Analysis, 35(2): 117-126(in Chinese with English abstract).
      Ishii, T., Shi, L., Huang, R., et al., 2016. Generation of Pressures over 40 GPa Using Kawai⁃Type Multi⁃Anvil Press with Tungsten Carbide Anvils. The Review of Scientific Instruments, 87(2): 024501. https://doi.org/10.1063/1.4941716
      Jenei, Z., O'Bannon, E. F., Weir, S. T., et al., 2018. Single Crystal Toroidal Diamond Anvils for High Pressure Experiments beyond 5 Megabar. Nature Communications, 9: 3563. https://doi.org/10.1038/s41467⁃018⁃06071⁃x
      Jiang, D., Gao, Y., Cao, M., et al., 2021. Diamond anvil cell with Double Coaxial Cchambers. Review of Scientific Instruments. 92: 123901.
      Kunimoto, T. and Irifune, T., 2010. Pressure Generation to 125 GPa Using a 6⁃8⁃2 Type Multianvil Apparatus with nano⁃Polycrystalline diamond anvils. Journal of Physics: Conference Series, 215: 012190. doi: 10.1088/1742-6596/215/1/012190
      Li, B., Ji, C., Yang, W. G., et al., 2018. Diamond Anvil Cell Behavior up to 4 Mbar. Proceedings of the National Academy of Sciences of the United States of America, 115(8): 1713-1717. https://doi.org/10.1073/pnas.1721425115
      Li, X. D., Yuan, Q. x., Xu, W., et al., 2020. Introduction of Fourth⁃Generation High Energy Photon Source HEPS and the Beamlines for High⁃Pressure Research. Chinese Journal of High Pressure Physics, 34(5): 1-13(in Chinese).
      Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017. Hydrogen⁃Bearing Iron Peroxide and the Origin of Ultralow⁃Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461
      Liu, Z. D., Irifune, T., Nishi, M., et al., 2016. Phase Relations in the System MgSiO3⁃Al2O3 up to 52 GPa and 2 000 K. Physics of the Earth and Planetary Interiors, 257: 18-27. https://doi.org/10.1016/j.pepi.2016.05.006
      Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earth's Core⁃Mantle Boundary. National Science Review, 4(6): 870-878. https://doi.org/10.1093/nsr/nwx109
      O'Bannon, E. F., Jenei, Z., Cynn, H., et al., 2018. Contributed Review: Culet Diameter and the Achievable Pressure of a Diamond Anvil Cell: Implications for the Upper Pressure Limit of a Diamond Anvil Cell. The Review of Scientific Instruments, 89(11): 111501. https://doi.org/10.1063/1.5049720
      Shang, F. C., 2010. Research on Ultra High Pressure Hydraulic System of 5 GPa High Temperature and High Pressure Rheometer(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Shang, Y. C., Shen, F. R., Hou, X. Y., et al., 2020. Pressure Generation above 35 GPa in a Walker⁃Type Large⁃Volume Press. Chinese Physics Letters, 37(8): 30-35.
      Shu, J. F, 2020. Space, Earth, Ocean: Mineralogical Studies under Extreme Conditions. Earth Science Frontiers, 27(3): 133-153. (in Chinese with English abstract).
      Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post⁃Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
      Xie, H. S., 2015. Explore the Way to the Deep Part of the Earth. Seismological Press, Beijing(in Chinese).
      Xie, L., Chanyshev, A., Ishii, T., et al., 2021. Simultaneous Generation of Ultrahigh Pressure and Temperature to 50 GPa and 3 300 K in Multi⁃Anvil Apparatus. Review of Scientific Instruments, 92: 103902. doi: 10.1063/5.0059279
      Xu, J., Bi, Y, 2012. Application of Synchrotron Radiation X⁃Ray Sources in High Pressure Research. Physics, 41(4): 218-226 (in Chinese with English abstract).
      Yang, K., Jiang, S., Yan, S., et al., 2020. Application of Shanghai Synchrotron Radiation Source in High Pressure Research. Chinese Journal of High Pressure Physics, 34(5): 16-28(in Chinese with English abstract).
      Yang, X. Z., 2015. A Brief Introduction of High Temperature and High Pressure Experimental Geosciences: Methods and Advances. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 509-525(in Chinese with English abstract).
      Yue, D., Gao, Y., Zhao, L., et al., 2019. In Situ Thermal Conductivity Measurement in Diamond Anvil Cell. Japanese Journal of Applied Physics, 58: 040906. doi: 10.7567/1347-4065/ab01f1
      Yue, D., Ji, T., Qin, T., et al., 2018. Accurate Temperature Measurement by Temperature Field Analysis in Diamond Anvil Cell for Thermal Transport Study of Matter under High Pressure. Applied Physics Letters. 112: 081901. doi: 10.1063/1.5010726
      Zhang, J. F., Ni, H. W., Yang, X. Z., et al., 2021. Progress and Perspective of Experimental Geoscience in China (2011⁃2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 597-609, 777(in Chinese with English abstract).
      Zhang, Y. J., Hou, M. Q., Liu, G. T., et al., 2020. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. Physical Review Letters, 125(7): 078501. https://doi.org/10.1103/PhysRevLett.125.078501
      Zhou, C. Y., Jin, Z. M, 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chinese with English abstract).
      Zhou, X. F., Ma, D. J., Wang, L. F., et al., 2020. Large⁃Volume Cubic Press Produces High Temperatures above 4 000 Kelvin for Study of the Refractory Materials at Pressures. The Review of Scientific Instruments, 91(1): 015118. https://doi.org/10.1063/1.5128190
      黄圣轩, 巫翔, 秦善, 2016. 高温高压下元素配分的原位实验与计算模拟研究进展. 岩矿测试, 35(2): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602002.htm
      李晓东, 袁清习, 徐伟, 等, 2020. 第四代高能同步辐射光源HEPS及高压相关线站建设. 高压物理学报, 34(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202005001.htm
      尚付成, 2010. 5 GPa高温高压流变仪超高压液压系统的研究(硕士学位论文). 武汉: 中国地质大学(武汉).
      束今赋, 2020. 上天、入地、下海: 极端条件下矿物学研究. 地学前缘, 27(3): 133-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003011.htm
      谢鸿森, 2015. 探索地球深部之路. 北京: 地震出版社.
      徐济安, 毕延, 2012. 同步辐射X射线光源在高压科学研究中的应用. 物理, 41(4): 218-226. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201204005.htm
      杨科, 蒋升, 闫帅, 等, 2020. 上海同步辐射光源高压相关线站概述. 高压物理学报, 34(5): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202005002.htm
      杨晓志, 2015. 浅谈高温高压实验地球科学: 方法和应用. 矿物岩石地球化学通报, 34(3): 509-525. doi: 10.3969/j.issn.1007-2802.2015.03.007
      章军锋, 倪怀玮, 杨晓志, 等, 2021. 中国实验地球科学研究进展与展望(2011~2020). 矿物岩石地球化学通报, 40(3): 597-609, 777. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103005.htm
      周春银, 金振民, 2014. 照亮地球深部的"明灯": 高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (2217) PDF downloads(348) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return