• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Zhu Weiping, Yao Qingzhou, Li Chuang, Chen Yongquan, Zhang Zhenghong, Fang Qifei, 2023. Hydrocarbon Accumulation Factors and Favorable Exploration of Carbonate Reservoirs in the 3rd⁃4th Members of Ordovician Yingshan Formation of Tazhong Low Salient. Earth Science, 48(2): 690-704. doi: 10.3799/dqkx.2022.304
    Citation: Zhu Weiping, Yao Qingzhou, Li Chuang, Chen Yongquan, Zhang Zhenghong, Fang Qifei, 2023. Hydrocarbon Accumulation Factors and Favorable Exploration of Carbonate Reservoirs in the 3rd⁃4th Members of Ordovician Yingshan Formation of Tazhong Low Salient. Earth Science, 48(2): 690-704. doi: 10.3799/dqkx.2022.304

    Hydrocarbon Accumulation Factors and Favorable Exploration of Carbonate Reservoirs in the 3rd⁃4th Members of Ordovician Yingshan Formation of Tazhong Low Salient

    doi: 10.3799/dqkx.2022.304
    • Received Date: 2022-11-23
    • Publish Date: 2023-02-25
    • Carbonate rock is the major target horizon for Paleogene oil/gas exploration in the Tazhong area of the Tazhong Low Salient, Well G70 in the north slope of Tazhong obtained high⁃yield industrial gas flow in the test of the fourth member of Yingshan Formation of Lower Ordovician, and the deep layer of Ordovician in the northern slope of Tazhong Low Salient showed broad exploration potential and can be used as the next important replacement domain of carbonate rocks in Tazhong uplift. Searching for high⁃quality reservoirs around oil source fracture is still the first choice for deep ordovician exploration target and target selection, but the distribution of o oil source fracture and distribution of high⁃quality reservoirs need to be further clarified. Based on 3D seismic data of Tazhong, combined with single well logging, well logging and physical properties of oil and gas, we analyzed oil source fracture characteristics, reservoir prediction and property controlling factors. It is found that the East and West ends of Tazhong No 1 fault, the west section of thrust fault in Tazhong No.10 fault belt and the numbered F1⁃F16 of NE strike slip fault have long⁃term effect of transporting oil and gas, which are the main oil source faults of Ordovician oil and gas accumulation in Tazhong Low Salient; In the relatively stable area of paleokarst landform, large⁃area and long⁃term water rock contact is conducive to the development of karst cave reservoirs; The late fault activity not only transformed the reservoir performance, but also enhanced the karstification, in the superposition area of fault and paleokarst landform stability area, it is more conducive to the development of high⁃quality karst cave reservoirs.Based on the above work, a comprehensive evaluation of reservoir formation was carried out based on regional seal distribution, high⁃quality reservoir distribution and fault distribution, and eleven Class Ⅰ favorable areas selected, to direct future exploration.

       

    • loading
    • Fan, Q., Fan, T. L., Li, Y. F., et al., 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302 (in Chinese with English abstract).
      Han, J. F., Zhang, H. Z., Yu, H. F., et al., 2012. Hydrocarbon Accumulation Characteristic and Exploration on Large Marine Carbonate Condensate Field in Tazhong Uplift. Acta Petrologica Sinica, 28(3): 769-782 (in Chinese with English abstract).
      Jia, C. Z. . 1997. Tectonic Characteristics and Petroleum, Tarim Basin, China. Petroleum Industry Press, Beijing (in Chinese).
      Jiang, T. W., Han, J. F., Wu, G. H., et al., 2020. Differences and Controlling Factors of Composite Hydrocarbon Accumulations in the Tazhong Uplift, Tarim Basin, NW China. Petroleum Exploration and Development, 47(2): 213-224 (in Chinese with English abstract).
      Jing, X. C., Du, P. D., Zhang, F., et al., 2007. A Preliminary Study on the Ordovician Conodont Biostratigraphy at the Yakrik Section, Northwestern Margin of the Tarim Basin, Xinjiang. Geological Review, 53(2): 242-249 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.02.012
      Li, C. X., Wang, X. F., Li, B. L., et al., 2013. Paleozoic Fault Systems of the Tazhong Uplift, Tarim Basin, China. Marine and Petroleum Geology, 39(1): 48-58. https://doi.org/10.1016/j.marpetgeo.2012.09.010
      Li, S. M., Pang, X. Q., Yang H. J., et al., 2010. Generation, Migration and Accumulation Model for the Marine Oils in the Tarim Basin. Earth Science, 35(4): 663-673 (in Chinese with English abstract).
      Loucks, R. G., 1999. Paleocave Carbonate Reservoirs: Origins, Burial-Depth Modifications, Spatial Complexity, and Reservoir Implications. AAPG Bulletin, 83(11): 1795-1834. https://doi.org/10.1306/e4fd426f-1732-11d7-8645000102c1865d
      Lü, X. X., Yang, N., Zhou, X. Y., et al., 2008. Influence of Ordovician Carbonate Reservoir Beds in Tarim Basin by Faulting. Science China(Seri. D): Earth Sciences, 38(Suppl. 1): 48-54 (in Chinese with English abstract).
      Lu, Z., Y., Chen, H. H., Feng, Y., ong, et al., 2015. Evidences of Multi-Episodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchengxu Uplift, Tarim Basin. Earth Science, 40(9): 1529-1537 (in Chinese with English abstract).
      Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753 (in Chinese with English abstract).
      Su, A. G., Zhang, S. C., Han, D. X., et al., 2004. Behavior of Chain Alkane Molecular Components in PVT Fractionation Experiment. Acta Sedimentologica Sinica, 22(2): 354-358 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2004.02.024
      Wang, B. W., Zhang, S. D., Ji, R., et al., 2017. Application of Microscope High Resolution LWD Resistivity Image Logging in Carbonate Reservoirs in Sichuan Basin. Well Logging Technology, 41(3): 358-363 (in Chinese with English abstract).
      Wang, Y. Y., Chen, J. F., Pang, X. Q., et al., 2018. Ordovician Hydrocarbon Charging Characteristics and Migration Direction in Tazhong Area. Acta Petrolei Sinica, 39(1): 54-68 (in Chinese with English abstract).
      Wang, Z. M., Xie, H. W., Chen, Y. Q., et al., 2014. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin. China Petroleum Exploration, 19(2): 1-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2014.02.001
      Wei, G. Q., Zhu, Y. J., Zheng, J. F., et al., 2021. Tectonic-Lithofacies Paleogeography, Large-Scale Source-Reservoir Distribution and Exploration Zones of Cambrian Subsalt Formation, Tarim Basin, NW China. Petroleum Exploration and Development, 48(6): 1114-1126 (in Chinese with English abstract).
      Wu, G. H., Pang, X. Q., Li, Q. M., et al., 2016. Structural Characteristics in Cratonic Carbonate Rocks and Its Implication for Oil/Gas Accumulation: A Case Study in the Tarim Basin, China. Chinese Science Press, Beijing (in Chinese with English abstract).
      Wu, G. H., Wang, H., Chen, Z. Y., et al., 2010. Characteristics of the Complex Ordovician Carbonate Reservoirs in the Tarim Basin. Oil & Gas Geology, 31(6): 763-769 (in Chinese with English abstract).
      Wu, G. H., Yang, H. J., He, S., et al., 2016. Effects of structural segmentation and faulting on carbonate reservoir properties: A case study from the Central Uplift of the Tarim Basin, China. Marine and Petroleum Geology, 71: 183-197 (in Chinese with English abstract). doi: 10.1016/j.marpetgeo.2015.12.008
      Wu, G. H., Yang, H. J., Qu, T. L., et al., 2012. The Fault System Characteristics and Its Controlling Roles on Marine carbonate Hydrocarbon in the Central Uplift, Tarim Basin. Acta Petrologica Sinica, 28(3): 793-805 (in Chinese with English abstract).
      Xiang, C. F., Wang, J. Z., Pang, X. Q., et al., 2009. Differential Hydrocarbon Migration and Entrapment in the Karstified Carbonate Reservoir: a Case Study of Well TZ83 Block of the Central Tarim Uplift Zone. Earth Science Frontiers, 16(6): 349-358(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60115-3
      Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract).
      Zeng, H. L., Wang, G. Z., Janson, X., et al., 2011. Characterizing Seismic Bright Spots in Deeply Buried, Ordovician Paleokarst Strata, Central Tabei Uplift, Tarim Basin, Western China. Geophysics, 76(4): B127-B137. https://doi.org/10.1190/1.3581199
      Zhai, G. M., He, W. Y., 2004. An Important Petroleum Exploration Region in Tarim Basin. Acta Petrolei Sinica, 25(1): 1-7(in Chinese with English abstract).
      Zhang, M., Zhang, Z. H., Xiong, Y. X., et al., 2020. Formation Mechanism and Distribution of Carbonate Reservoirs in the 3rd-4th Members of Ordovician Yingshan Formation on the Northern Slope of Tazhong Uplift. Natural Gas Geoscience, 31(5): 636-646 (in Chinese with English abstract).
      Zhang, S. C., Gao, Z. Y., Li, J. J., et al., 2012. Identification and Distribution of Marine Hydrocarbon Source Rocks in the Ordovicianand Cambrian of the Tarim Basin. Petroleum Exploration and Development, 39(3): 285-294 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60044-5
      Zhao, J. Z., 2001. Evoluation on the Cambrian-Ordovician Marine Source Rocks from the North Tarim Basin. Acta Sedimentologica Sinica, 19(1): 117-124 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2001.01.020
      Zhong, G. F., Liu, R. L., Liu, J. H., et al., 2004. Identifying the Paleocaves in Ordovician in Tabei Uplift by Electro Imaging Logs. Natural Gas Industry, 24(6): 57-60 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2004.06.017
      Zhu, G. Y., Chen, F. R., Wang, M., et al., 2018. Discovery of the Lower Cambrian High-Quality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin, China. AAPG Bulletin, 102(10): 2123-2151. https://doi.org/10.1306/03141817183
      Zhu, G. Y., Zhang, B. T., Yang, H. J., et al., 2014. Origin of Deep Strata Gas of Tazhong in Tarim Basin, China. Organic Geochemistry, 74: 85-97. https://doi.org/10.1016/j.orggeochem.2014.03.003
      樊奇, 樊太亮, 李一凡, 等, 2020. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285-302. doi: 10.3799/dqkx.2018.128
      韩剑发, 张海祖, 于红枫, 等, 2012. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探. 岩石学报, 28(3): 769-782. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203007.htm
      贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.
      江同文, 韩建发, 邬光辉, 等, 2020. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素. 石油勘探与开发, 47(2): 213-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002002.htm
      景秀春, 杜品德, 张放, 等, 2007. 塔里木盆地亚科瑞克剖面奥陶系牙形石生物地层初步研究. 地质论评, 53(2): 242-249. doi: 10.3321/j.issn:0371-5736.2007.02.012
      李素梅, 庞雄奇, 杨海军, 等, 2010. 塔里木盆地海相油气源与混源成藏模式. 地球科学, 35(4): 663-673. doi: 10.3799/dqkx.2010.081
      鲁子野, 陈红汉, 丰勇, 等, 2015. 塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义. 地球科学, 40(9): 1529-1537. doi: 10.3799/dqkx.2015.137
      吕修祥, 杨宁, 周新源, 等, 2008. 塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响. 中国科学(D辑): 地球科学, 38(增刊1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1006.htm
      马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
      苏爱国, 张水昌, 韩德馨, 等, 2004. PVT分馏实验中链状烷烃分子的行为. 沉积学报, 22(2): 354-358. doi: 10.3969/j.issn.1000-0550.2004.02.024
      王邦伟, 张树东, 吉人, 等, 2017. 高分辨率随钻电阻率成像测井在四川盆地碳酸盐岩储层的应用. 测井技术, 41(3): 358-363. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201703023.htm
      王阳洋, 陈践发, 庞雄奇, 等, 2018. 塔中地区奥陶系油气充注特征及运移方向. 石油学报, 39(1): 54-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801005.htm
      王招明, 谢会文, 陈永权, 等, 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义. 中国石油勘探, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htm
      魏国齐, 朱永进, 郑剑锋, 等, 2021. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价. 石油勘探与开发, 48(6): 1114-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106005.htm
      邬光辉, 庞雄奇, 李启明, 等, 2016. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例. 北京: 科学出版社.
      邬光辉, 汪海, 陈志勇, 等, 2010. 塔里木盆地奥陶系碳酸盐岩复杂油气藏的特性. 石油与天然气地质, 31(6): 763-769. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006012.htm
      邬光辉, 杨海军, 屈泰来, 等, 2012. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用. 岩石学报, 28(3): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203009.htm
      向才富, 王建忠, 庞雄奇, 等, 2009. 塔中83井区表生岩溶缝洞体系中油气的差异运聚作用. 地学前缘, 16(6): 349-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906045.htm
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      翟光明, 何文渊, 2004. 塔里木盆地石油勘探实现突破的重要方向. 石油学报, 25(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401000.htm
      张敏, 张正红, 熊益学, 等, 2020. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律. 天然气地球科学, 31(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005005.htm
      张水昌, 高志勇, 李建军, 等, 2012. 塔里木盆地寒武系-奥陶系海相烃源岩识别与分布预测. 石油勘探与开发, 39(3): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203005.htm
      赵靖舟, 2001. 塔里木盆地北部寒武-奥陶系海相烃源岩重新认识. 沉积学报, 19(1): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200101020.htm
      钟广法, 刘瑞林, 柳建华, 等, 2004. 塔北隆起奥陶系古岩溶的电成像测井识别. 天然气工业, 24(6): 57-60.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (522) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return