• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 4
    Apr.  2024
    Turn off MathJax
    Article Contents
    Chao Weiwei, Xu Deru, Li Zenghua, Chen Liquan, Zhou Xianjun, Yuan Bo, Yang Lifei, Chen Jiajie, Zhang Jian, 2024. Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province. Earth Science, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305
    Citation: Chao Weiwei, Xu Deru, Li Zenghua, Chen Liquan, Zhou Xianjun, Yuan Bo, Yang Lifei, Chen Jiajie, Zhang Jian, 2024. Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province. Earth Science, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305

    Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province

    doi: 10.3799/dqkx.2022.305
    • Received Date: 2022-03-31
      Available Online: 2024-04-30
    • Publish Date: 2024-04-25
    • To study the genesis of ore deposits in the Dongxiang volcanic basin, the Huxu Au-Pb-Zn deposit was selected as the research object, and a detailed study of quartz trace elements, fluid inclusions thermometry and chemical compositions of chlorite was carried out. The results indicate that the main element substitution mechanism is Al3++Li+ = Si4+.The pH of the ore-forming fluids is fluctuated episodically. The fluid inclusions are mainly gas-liquid type. The chlorite formed in an environment with relatively high sulfur fugacity and low oxygen fugacity. The ore-forming temperature is estimated to be 210-280 ℃.Combined with previous studies, it suggests that the Huxu deposit evolved with varying mixing ratio of magmatic fluids and meteoric water, accompanied by fluid-rock interaction, leading to the precipitation of ore veins in the opening fractures. The Huxu deposit is considered as epithermal deposit, with buried porphyry body.

       

    • loading
    • Battaglia, S., 1999. Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays and Clay Minerals, 47(1): 54-63. https://doi.org/10.1346/CCMN.1999.0470106
      Chen, Y. J, Ni, P., Fan, H. R, et al. , 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085-2108(in Chinese with English abstract).
      Foster, M. D., 1962. Interpretation of the Composition and A Classification of the Chlorites. US. Geol. Surv. Prof. Pap. , 414A: 1-27. https://doi.org/10.3133/pp414A
      Hua, R. H., Wu, D. L., Yu, Z. S., et al. , 2008. Geologic Characteristics and Ore-Hunting Indicators of the Huangbaikeng Lead and Zinc Deposit in Shangrao, Jiangxi Province. Geology of Fujian, 27(4): 361-368(in Chinese with English abstract).
      Huang, R., Audétat, A., 2012. The Titanium-in-Quartz (TitaniQ) Thermobarometer: A Critical Examination and Re-Calibration. Geochimica et Cosmochimica Acta, 84: 75-89. https://doi.org/10.1016/j.gca.2012.01.009
      Inoue, A., 1995. Formation of Clay Minerals in Hydrothermal Environments. //Veide. Origin and Mineralogy of Clays. Springer, Berlin, 268-330. https://doi.org/10.1007/978-3-662-12648-6_7
      Jourdan, A. L., Vennemann, T. W., Mullis, J., et al., 2009. Oxygen Isotope Sector Zoning in Natural Hydrothermal Quartz. Mineralogical Magazine, 73(4): 615-632. https://doi.org/10.1180/minmag.2009.073.4.615
      Landtwing, M. R., Pettke, T., 2005. Relationships between SEM-Cathodoluminescence Response and Trace-Element Composition of Hydrothermal Vein Quartz. American Mineralogist, 90(1): 122-131. https://doi.org/10.2138/am.2005.1548
      Larsen, R. B., Henderson, I., Ihlen, P. M., et al., 2004. Distribution and Petrogenetic Behaviour of Trace Elements in Granitic Pegmatite Quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615-628. https://doi.org/10.1007/s00410-004-0580-4
      Lehmann, K., Pettke, T., Ramseyer, K., 2011. Significance of Trace Elements in Syntaxial Quartz Cement, Haushi Group Sandstones, Sultanate of Oman. Chemical Geology, 280(1/2): 47-57. https://doi.org/10.1016/j.chemgeo.2010.10.013
      Leng, C. B., Qi, Y. Q., 2017. Genesis of the Lengshuikeng Ag-Pb-Zn Orefield in Jiangxi: Constraint from In-Situ LA-ICPMS Analyses of Minor and Trace Elements in Sphalerite and Galena. Acta Geologica Sinica, 91(10): 2256-2272(in Chinese with English abstract).
      Li, H. D., Pan, J. Y., Liu, W. Q., et al., 2017. Mineral Characteristics and Geological Significance of Chlorite from the Julong'an Uranium Deposit in Le'an, Jiangxi Province. Acta Petrologica et Mineralogica, 36(4): 535-548(in Chinese with English abstract).
      Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
      Li, R. C., Chen, H. Y., Li, G. H., et al., 2020. Geological Characteristics and Application of Short Wave Length Infra-Red Technology(SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530(in Chinese with English abstract).
      Lindgren, W., 1922. A Suggestion for the Terminology of Certain Mineral Deposits. Economic Geology, 17(4): 292-294. https://doi.org/10.2113/gsecongeo.17.4.292
      Liu, M., Wang, Z. L., Xu, D. R., et al., 2018. Mineralogy of Chlorite, Pyrite and Chalcopyrite in the Jingchong Co-Cu Polymetallic Deposit in Northeastern Hunan Province, South China: Implications for Ore Genesis. Geotectonica et Metallogenia, 42(5): 862-879(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Luo, P., 2010. Study on Metallogenic Regularity and Prospecting Direction of Copper Polymetallic Deposits in Northern Wuyi Area, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Mao, W., Rusk, B., Yang, F. C., et al., 2017. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz. Economic Geology, 112(4): 889-918. https://doi.org/10.2113/econgeo.112.4.889
      Ni, P., Chi, Z., Pan, J. Y., 2020. An Integrated Investigation of Ore-Forming Fluid Evolution in Porphyry and Epithermal Deposits and Their Implication on Exploration. Earth Science Frontiers, 27(2): 60-78(in Chinese with English abstract).
      Nieto, F., 1997. Chemical Composition of Metapelitic Chlorites: X-Ray Diffraction and Optical Property Approach. European Journal of Mineralogy, 9(4): 829-842. https://doi.org/10.1127/ejm/9/4/0829
      Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790-805. https://doi.org/10.1007/s12583-020-1383-x
      Qi, Y. Q., Hu, R. Z., Gao, J. F., et al., 2021. Trace Element Characteristics of Magnetite: Constraints on the Genesis of the Lengshuikeng Ag-Pb-Zn Deposit, China. Ore Geology Reviews, 129: 103943. https://doi.org/10.1016/j.oregeorev.2020.103943
      Qiu, K. F., Deng, J., Yu, H. C., et al., 2021. Identifying Hydrothermal Quartz Vein Generations in the Taiyangshan Porphyry Cu-Mo Deposit (West Qinling, China) Using Cathodoluminescence, Trace Element Geochemistry, and Fluid Inclusions. Ore Geology Reviews, 128: 103882. https://doi.org/10.1016/j.oregeorev.2020.103882
      Rausell-Colom, J. A., Wiewiora, A., Matesanz, E., 1991. Relationship between Composition and d001 for Chlorite. American Mineralogist, 76(7-8): 1373-1379.
      Rottier, B., Casanova, V., 2021. Trace Element Composition of Quartz from Porphyry Systems: A Tracer of the Mineralizing Fluid Evolution. Mineralium Deposita, 56(5): 843-862. https://doi.org/10.1007/s00126-020-01009-0
      Rusk, B., 2012. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer, Berlin, Heidelberg, 307-329. https://doi.org/10.1007/978-3-642-22161-3_14
      Rusk, B. G., Lowers, H. A., Reed, M. H., 2008. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology, 36(7): 547-550. https://doi.org/10.1130/g24580a.1
      Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton. https://doi.org/10.5382/av100.16
      Song, G. X., Qin, K. Z., Li, G. M., et al., 2018. Basic Characteristics and Research Progresses of Intermediate Sulfidation Type Epithermal Gold Poly-Metallic Deposits, and Prospects. Acta Petrologica Sinica, 34(3): 748-762(in Chinese with English abstract).
      Su, H. M., 2013. Study on the Genesis of Volcanic-Intrusive Rocks and Their Relationship with Mineralization in Tianhuashan Basin, North Wuyi (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Walshe, J. L., 1986. A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems. Economic Geology, 81(3): 681-703. https://doi.org/10.2113/gsecongeo.81.3.681
      Wang, K. Y., Lu, Z. X., Tan, T. L., 1998. The Analysis on Gold Mineralization Perspecting of Huxu Gold Deposit and Its Peripheral Areas in Dongxiang Mesozoic Igneous Province in Jiangxi. Gold Geology, 4(3): 15-21(in Chinese with English abstract).
      Wu, D. H., Pan, J. Y., Xia, F., et al., 2018. Characteristics and Formation Conditions of Chlorite in the Shangjiao Uranium Deposit in the Southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393-405(in Chinese with English abstract).
      Wu, Z. R., 2003. Metallogenetic Character and Prospeeting Orientation of Gold Deposit in Dongxiang Volcanic Basin. Mineral Resources and Geology, 17(97): 410-413(in Chinese with English abstract).
      Xie, X. G., Byerly, G. R., Ferrell Jr, R. E., 1997. IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry. Contributions to Mineralogy and Petrology, 126(3): 275-291. https://doi.org/10.1007/s004100050250
      Yan, J. L., Jiang, J. J., Zhang, J., et al., 2012. Metallogenic Geological and Geochemical Characteristics and Ore-Prospecting Potential of Dongxiang Volcanic Area, Jiangxi Province. Geophysical and Geochemical Exploration, 36(4): 534-538(in Chinese with English abstract).
      Yang, Z. M., Chang, Z. S., Paquette, J., et al., 2015. Magmatic Au Mineralization at the Bilihe Au Deposit, China. Economic Geology, 110(7): 1661-1668. https://doi.org/10.2113/econgeo.110.7.1661
      Zang, W., Fyfe, W. S., 1995. Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil. Mineralium Deposita, 30(1): 30-38. https://doi.org/10.1007/BF00208874
      Zhang, W., Zhang, S. T., Cao, H. W., et al., 2014. Characteristics of Chlorite Minerals from Xiaolonghe Tin Deposit in West Yunnan, China and Their Geological Implications. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 318-328(in Chinese with English abstract).
      Zhang, X. T., Pan, J. Y., Xia, F., et al., 2022. Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region. Earth Science, 47(1): 192-205(in Chinese with English abstract).
      Zhou, X. J., Li, S. Q., Chen, L. Q., 2019. Discussion of Metallogenic Regularity and Prospecting Direction of Dongxiang Volcanic Basin in Jiangxi Province. Journal of East China Institute of Technology (Natural Science Edition), 42(1): 45-51(in Chinese with English abstract).
      陈衍景, 倪培, 范宏瑞, 等, 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200709009.htm
      华嵘辉, 吴德来, 余祖寿, 等, 2008. 江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志. 福建地质, 27(4): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ200804004.htm
      冷成彪, 齐有强, 2017. 闪锌矿与方铅矿的LA-ICPMS微量元素地球化学对江西冷水坑银铅锌矿田的成因制约. 地质学报, 91(10): 2256-2272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201710008.htm
      李海东, 潘家永, 刘文泉, 等, 2017. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535-548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201704007.htm
      李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229?viewType=HTML
      李如操, 陈华勇, 李光辉, 等, 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192?viewType=HTML
      刘萌, 王智琳, 许德如, 等, 2018. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义. 大地构造与成矿学, 42(5): 862-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805008.htm
      罗平, 2010. 江西北武夷地区铜多金属矿成矿规律及找矿方向研究(博士学位论文). 北京: 中国地质大学.
      倪培, 迟哲, 潘君屹, 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例. 地学前缘, 27(2): 60-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002006.htm
      宋国学, 秦克章, 李光明, 等, 2018. 中硫型浅成低温热液金多金属矿床基本特征、研究进展与展望. 岩石学报, 34(3): 748-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803014.htm
      苏慧敏, 2013. 北武夷天华山盆地火山-侵入岩的成因及其与成矿关系的研究. 北京: 中国地质大学.
      王可勇, 卢作祥, 谭铁龙, 1998. 江西东乡中生代火山岩区金的成矿远景分析. 黄金地质, 4(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ803.002.htm
      吴德海, 潘家永, 夏菲, 等, 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4): 393-405. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201804006.htm
      吴忠如, 2003. 东乡火山盆地金矿成矿地质特征及找矿方向. 矿产与地质, 17(97): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2003S1042.htm
      晏俊灵, 江俊杰, 张娟, 等, 2012. 江西省东乡火山岩区成矿地质、地球化学特征及找矿潜力. 物探与化探, 36(4): 534-538. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204005.htm
      张伟, 张寿庭, 曹华文, 等, 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版), 41(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403008.htm
      张笑天, 潘家永, 夏菲, 等, 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192-205. doi: 10.3799/dqkx.2021.046?viewType=HTML
      周先军, 李淑琴, 陈立泉, 2019. 江西东乡火山盆地成矿规律及找矿方向探讨. 东华理工大学学报(自然科学版), 42(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201901007.htm
    • dqkxzx-49-4-1292-附表2-3.doc
      dqkxzx-49-4-1292-附表1.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (107) PDF downloads(12) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return