Citation: | Guo Zizheng, Yang Yufei, He Jun, Huang Da, 2024. Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism. Earth Science, 49(5): 1665-1678. doi: 10.3799/dqkx.2022.306 |
Chen, C. Y., Chen, T. C. C., Yu, W. H., et al., 2005. Rainfall Duration and Debris-Flow Initiated Studies for Real-Time Monitoring. Environmental Geology, 47(5): 715-724. https://doi.org/10.1007/s00254-004-1203-0
|
Corsini, A., Mulas, M., 2017. Use of ROC Curves for Early Warning of Landslide Displacement Rates in Response to Precipitation (Piagneto Landslide, Northern Apennines, Italy). Landslides, 14(3): 1241-1252. https://doi.org/10.1007/s10346-016-0781-8
|
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018
|
Deng, C. J., Wang, K. W., Yuan, Q. S., et al., 2015. Stability of Reservoir Slope under Repetitive Variation of Reservoir Water Level. Journal of Yangtze River Scientific Research Institute, 32(4): 96-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5485.2015.04.019
|
Ding, Y. K., Zhu, Y. L., Feng, J., et al., 2020. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting. Neurocomputing, 403: 348-359. https://doi.org/10.1016/j.neucom.2020.04.110
|
Guo, Z. Z., Chen, L. X., Gui, L., et al., 2020a. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides, 17(3): 567-583. https://doi.org/10.1007/s10346-019-01314-4
|
Guo, Z. Z., Chen, L. X., Yin, K. L., et al., 2020b. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. https://doi.org/10.1016/j.enggeo.2020.105667
|
Hakim, W. L., Rezaie, F., Nur, A. S., et al., 2022. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. Journal of Environmental Management, 305: 114367. https://doi.org/10.1016/j.jenvman.2021.114367
|
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
|
Huang, D., Gu, D. M., 2017. Influence of Filling-Drawdown Cycles of the Three Gorges Reservoir on Deformation and Failure Behaviors of Anaclinal Rock Slopes in the Wu Gorge. Geomorphology, 295: 489-506. https://doi.org/10.1016/j.geomorph.2017.07.028
|
Huang, D., Luo, S. L., Zhong, Z., et al., 2020. Analysis and Modeling of the Combined Effects of Hydrological Factors on a Reservoir Bank Slope in the Three Gorges Reservoir Area, China. Engineering Geology, 279: 105858. https://doi.org/10.1016/j.enggeo.2020.105858
|
Li, S. H., Wu, N., 2021. A New Grey Prediction Model and Its Application in Landslide Displacement Prediction. Chaos, Solitons & Fractals, 147: 110969. https://doi.org/10.1016/j.chaos.2021.110969
|
Li, X. Z., Kong, J. M., 2014. Application of GA-SVM Method with Parameter Optimization for Landslide Development Prediction. Natural Hazards and Earth System Sciences, 14(3): 525-533. https://doi.org/10.5194/nhess-14-525-2014
|
Li, Y. J., Xu, Q., He, Y. S., et al., 2017. An ARMA-(LASSO-ELM)-Copula Framework for Landslide Displacement Prediction and Threshold Computing of the Displacement of Step-Like Landslides. Chinese Journal of Rock Mechanics and Engineering, 36(S2): 4075-4084 (in Chinese with English abstract).
|
Liu, Y. Q., Zhang, Q., Song, L. H., et al., 2019. Attention-Based Recurrent Neural Networks for Accurate Short-Term and Long-Term Dissolved Oxygen Prediction. Computers and Electronics in Agriculture, 165: 104964. https://doi.org/10.1016/j.compag.2019.104964
|
Luo, W. Q., Ji, Y. L., Wang, C. Y., et al., 2016. Research on Seemingly Unrelated Regressions Model of Landslide Displacement Prediction of Multiple Monitoring Points. Chinese Journal of Rock Mechanics and Engineering, 35(S1): 3051-3056 (in Chinese with English abstract). http://www.researchgate.net/publication/303919174_Research_on_seemingly_unrelated_regressions_model_of_landslide_displacement_prediction_of_multiple_monitoring_points
|
Ma, H. T., Zhang, Y. H., Yu, Z. X., 2021. Research on the Identification of Acceleration Starting Point in Inverse Velocity Method and the Prediction of Sliding Time. Chinese Journal of Rock Mechanics and Engineering, 40(2): 355-364 (in Chinese with English abstract).
|
Ma, X. Y., Wang, L. M., Qi, K. L., et al., 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752 (in Chinese with English abstract).
|
Ma, Z. J., Mei, G., Prezioso, E., et al., 2021. A Deep Learning Approach Using Graph Convolutional Networks for Slope Deformation Prediction Based on Time-Series Displacement Data. Neural Computing and Applications, 33(21): 14441-14457. https://doi.org/10.1007/s00521-021-06084-6
|
Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2017. Research on Progressive Failure Process of Baishuihe Landslide Based on Monte Carlo Model. Stochastic Environmental Research and Risk Assessment, 31(7): 1683-1696. https://doi.org/10.1007/s00477-016-1224-8
|
Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
|
Ren, Q. B., Li, M. C., Li, H., et al., 2021. A Novel Deep Learning Prediction Model for Concrete Dam Displacements Using Interpretable Mixed Attention Mechanism. Advanced Engineering Informatics, 50: 101407. https://doi.org/10.1016/j.aei.2021.101407
|
Shang, M., Liao, F., Ma, R., et al., 2021. Quantitative Correlation Analysis on Deformation of Baijiabao Landslide between Rainfall and Reservoir Water Level. Journal of Engineering Geology, 29(3): 742-750 (in Chinese with English abstract).
|
Song, K., Chen, L. Y., Liu, Y. L., et al., 2022. Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation. Earth Science, 47(10): 3665-3676 (in Chinese with English abstract).
|
Song, K., Yan, E. C., Zhu, D. P., et al., 2011. Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability. Rock and Soil Mechanics, 32(9): 2798-2802 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.09.039
|
Su, X. J., Zhou, W. X., Li, C. J., et al., 2022. Interpretable Offshore Wind Power Output Forecasting Based on Long Short-Term Memory Neural Network with Dual-Stage Attention. Automation of Electric Power Systems, 46(7): 141-151 (in Chinese with English abstract).
|
Wang, Z. W., Li, D. Y., 2005. Application of 3S Technology in Landslide Monitoring. Journal of Yangtze River Scientific Research Institute, 22(5): 33-36 (in Chinese with English abstract).
|
Woo, S., Park, J., 2018. CBAM: Convolutional Block Attention Module. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 3-19.
|
Wu, Q., Zhou, C. B., Huang, F. M., et al., 2022. Optimization of the Landslide Identification Method Based on a Dual Attention Mechanism. Bulletin of Geological Science and Technology, 41(2): 246-253 (in Chinese with English abstract).
|
Xia, M., Ren, G. M., Ma, X. L., 2013. Deformation and Mechanism of Landslide Influenced by the Effects of Reservoir Water and Rainfall, Three Gorges, China. Natural Hazards, 68(2): 467-482. https://doi.org/10.1007/s11069-013-0634-x
|
Xu, C., Liu, B. G., Liu, K. Y., et al., 2011. Intelligent Analysis Model of Landslide Displacement Time Series Based on Coupling PSO-GPR. Rock and Soil Mechanics, 32(6): 1669-1675 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.06.013
|
Xu, F., Fan, C. J., Xu, X. J., et al., 2018. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model. Journal of Shanghai Jiao Tong University, 52(10): 1388-1395, 1416 (in Chinese with English abstract).
|
Xu, S. L., Niu, R. Q., 2018. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Computers & Geosciences, 111: 87-96. https://doi.org/10.1016/j.cageo.2017.10.013
|
Yin, Y. P., Huang, B. L., Wang, W. P., et al., 2016. Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 577-595. https://doi.org/10.1016/j.jrmge.2016.08.001
|
Yin, Y. P., Wang, H. D., Gao, Y. L., et al., 2010. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3): 339-349. https://doi.org/10.1007/s10346-010-0220-1
|
Zhang, K., Zhang, K., Bao, R., et al., 2021. Intelligent Prediction of Landslide Displacements Based on Optimized Empirical Mode Decomposition and K-Mean Clustering. Rock and Soil Mechanics, 42(1): 211-223 (in Chinese with English abstract).
|
Zheng, J., 2006. Methods and Standards of Landslide Stability Evaluation. The Chinese Journal of Geological Hazard and Control, 17(3): 53-57 (in Chinese with English abstract).
|
Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0
|
邓成进, 王孔伟, 袁秋霜, 等, 2015. 库水长期升降作用下库岸边坡稳定性研究. 长江科学院院报, 32(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201504022.htm
|
李骅锦, 许强, 何雨森, 等, 2017. "阶跃式" 滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型. 岩石力学与工程学报, 36(S2): 4075-4084. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2041.htm
|
罗文强, 冀雅楠, 王淳越, 等, 2016. 多监测点滑坡变形预测的似乎不相关模型研究. 岩石力学与工程学报, 35(S1): 3051-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1052.htm
|
马海涛, 张亦海, 于正兴, 2021. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究. 岩石力学与工程学报, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm
|
马欣悦, 王梨名, 祁昆仑, 等, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
|
尚敏, 廖芬, 马锐, 等, 2021. 白家包滑坡变形与库水位、降雨相关性定量化分析研究. 工程地质学报, 29(3): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103017.htm
|
宋琨, 陈伦怡, 刘艺梁, 等, 2022. 降雨诱发深层老滑坡复活变形的动态作用机制. 地球科学, 47(10): 3665-3676. doi: 10.3799/dqkx.2022.184
|
宋琨, 晏鄂川, 朱大鹏, 等, 2011. 基于滑体渗透性与库水变动的滑坡稳定性变化规律研究. 岩土力学, 32(9): 2798-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109043.htm
|
苏向敬, 周汶鑫, 李超杰, 等, 2022. 基于双重注意力LSTM神经网络的可解释海上风电出力预测. 电力系统自动化, 46(7): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT202207016.htm
|
王志旺, 李端有, 2005.3S技术在滑坡监测中的应用. 长江科学院院报, 22(5): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200505010.htm
|
吴琪, 周创兵, 黄发明, 等, 2022. 基于双重注意力机制的滑坡识别方法优化. 地质科技通报, 41(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202025.htm
|
徐冲, 刘保国, 刘开云, 等, 2011. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型. 岩土力学, 32(6): 1669-1675.
|
徐峰, 范春菊, 徐勋建, 等, 2018. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测. 上海交通大学学报, 52(10): 1388-1395, 1416. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
|
张凯, 张科, 保瑞, 等, 2021. 基于优化经验模态分解和聚类分析的滑坡位移智能预测研究. 岩土力学, 42(1): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101024.htm
|
郑静, 2006. 滑坡稳定性评价的方法及标准. 中国地质灾害与防治学报, 17(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200603014.htm
|