• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    He Jiayang, Ju Nengpan, Xie Mingli, Wen Yan, Zuo Xuming, Deng Mingdong, 2023. Comparison of InSAR Technology for Identification of Hidden Dangers of Geological Hazards in Alpine and Canyon Areas. Earth Science, 48(11): 4295-4310. doi: 10.3799/dqkx.2022.308
    Citation: He Jiayang, Ju Nengpan, Xie Mingli, Wen Yan, Zuo Xuming, Deng Mingdong, 2023. Comparison of InSAR Technology for Identification of Hidden Dangers of Geological Hazards in Alpine and Canyon Areas. Earth Science, 48(11): 4295-4310. doi: 10.3799/dqkx.2022.308

    Comparison of InSAR Technology for Identification of Hidden Dangers of Geological Hazards in Alpine and Canyon Areas

    doi: 10.3799/dqkx.2022.308
    • Received Date: 2022-09-01
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • InSAR technology is widely used in the identification of hidden dangers of geological disasters. Different InSAR methods have certain application conditions and limiting factors. However, the disaster-causing mechanism of geological disasters in alpine and canyon areas is complex and the disaster patterns are diverse, which is often difficult to effectively identify using one technical method. In this paper, differential interferometry (D-InSAR), permanent scatterer measurement (PS-InSAR), small baseline set measurement (SBAS-InSAR), distributed target measurement (DS-InSAR) and offset tracking (Offset-tracking) a total of 5 InSAR technologies, taking the Xichang area along the Yalong River as the research area to identify potential geological hazards, and to carry out comparison and analysis of different InSAR technology methods. The results show that a total of 28 deformation points were identified, of which 16 were identified by D-InSAR, 27 by SBAS-InSAR, 3 by PS-InSAR, 21 by DS-InSAR, and 21 by Offset-tracking 0.In the alpine and canyon areas, SBAS-InSAR technology has the widest application range and the largest number of hidden danger points. Taking into account the accuracy and efficiency, it can effectively identify the hidden dangers of geological disasters in the alpine and canyon areas. Based on the analysis of the particularity of using InSAR technology to identify hidden dangers of geological disasters in high mountains and valleys, a technical route of using InSAR technology to identify hidden dangers of geological disasters in high mountains and valleys is proposed according to the characteristics of different methods and technologies, so as to identify hidden dangers of geological disasters more efficiently and accurately.

       

    • loading
    • Berardino, P., Fornaro, G., Lanari, R., et al., 2002. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience & Remote Sensing, 40(11): 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
      Chen, F. L, Hui, L., Zhen, L., et al., 2012. Interaction between Permafrost and Infrastructure along the Qinghai–Tibet Railway Detected via Jointly Analysis of C- and L-band Small Baseline SAR Interferometry. Remote Sensing of Environment, 123: 532-540. https://doi.org/10.1016/j.rse.2012.04.020
      Costantini, M., Ferretti, A., Minati, F., et al., 2017. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-Sky Med Radar Data. Remote Sensing of Environment, 202: 250-275. doi: 10.1016/j.rse.2017.07.017
      Dai, K., Chen, G., Xu, Q., et al., 2018. Potential Landslide Early Detection near Wenchuan by a Qualitatively Multi-baseline D InSAR Method. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3: 253-256. doi: 10.5194/isprs-archives-XLII-3-253-2018
      Ferretti, A., Prati, C., Rocca, F., 2001. Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience & Remote Sensing, 39(1): 8-20. https://doi.org/10.1109/36.898661
      Gabriel, A. K., Goldstein, R. M., Zebker, H. A., 1989. Mapping Small Elevation Changes over Large Areas: Differental Radar Interferometry. Journal of Geophysical Research: Solid Earth, 94(B7): 9183-9191. doi: 10.1029/JB094iB07p09183
      Gong, W., Thiele, A., Hinz, S., et al., 2016. Comparsion of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation. Remote Sensing, 8(4): 330. doi: 10.3390/rs8040330
      Grandin, R., Klein, E., Métois, M., et al., 2016. Three-Dimensional Displacement Field of the 2015 Mw 8.3 Illapel Earthquake (Chile) from Across- and Along-Track Sentinel-1 TOPS Interferometry. Geophysical Research Letters, 43(6): 2552-2561.
      Hooper, A., Bekaert, D., Spaans, K., et al., 2012. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation. Tectonophysics, 514: 1-13.
      Hu, X., Wang, T., Liao, M. S., 2014. Meassring Coseismic Displacements with Point-Like Targets Offset Tracking. IEEE Geoscience and Remote Sensing Letters, 11(1): 283-287. doi: 10.1109/LGRS.2013.2256104
      Huang, R., Han, J. Q., Li, J. T., et al., 2021. Research on Application of PS-InSAR Technology in Subsidence Monitoring of Sino-Myanmar Oil and Gas Pipelines. Laser & Optoelectronics Progress, 59(16): 1628006 (in Chinese with English abstract).
      Jiang, J. X., Du, Y. L., Chen, Y., et al., 2021. Monitoring and Analysis of Surface Deformation in Peibei Mining Region Based on DS-InSAR Technique. Bulletin of Surveying and Mapping, (2): 117-121 (in Chinese with English abstract).
      Jiang, K. G., Wang, L., Teng, C. Q., et al., 2021. Research on Dynamic Monitoring Method of Surface Three-Dimensional Deformation of Coal Mine Based on Fusion of Single Sight D-InSAR and BK Model. Geomatics and Information Science of Wuhan University (in Chinese with English abstract).
      Lanari, R., Mora, O., Manunta, M., et al., 2004. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1377-1386. doi: 10.1109/TGRS.2004.828196
      Li, S., Wen, J. S., Hu, H. F., 2021. Research on Large Gradient Deformation of Mining Area Based on InSAR Technology. Science of Surveying and Mapping, 46(11): 56-62, 97 (in Chinese with English abstract).
      Li, X. E., Zhou, L., Su, F. Z., et al., 2021. Application of InSAR Technology in Landslide Hazard: Progress and Prospects. Journal of Remote Sensing, 25(2): 614-629(in Chinese with English abstract).
      Li, Z. H., Song, C., Yu, C., et al., 2019. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions. Geomatics and Information Science of Wuhan University, 44(7): 967-979 (in Chinese with English abstract).
      Lin, H., Ma, P. F., Wang, W. X., 2017. Urban Infrastructure Health Monitoring with Spaceborne Multi-Temporal Synthetic Aperture Radar Interferometry. Acta Geodaetica et Cartographica Sinica, 46(10): 1421-1433 (in Chinese with English abstract).
      Liu, G. X., Chen, Q., Luo, X. J., et al., 2019. Principle and Application of InSAR. Science Press, Beijing, 9 (in Chinese).
      Liu, P. Y., Chang, M., Wu, B. B., et al., 2022. Route Selection of Landslide Prone Area in Wenchuan Section of Chengdu-Wenchuan Expressway Based on SBAS-InSAR. Earth Science, 47(6): 2048-2057 (in Chinese with English abstract).
      Mohammed, O. I., Saeidi, V., Pradhan, B., et al., 2014. Advanced Differential Interferometry Synthetic Aperture Radar Techniques for Deformation Monitoring: A Review on Sensors and Recent Research Development. Geocarto International, 29(5): 536-553. https://doi.org/10.1080/10106049.2013.807305
      Raucoules, D., de Michele, M., Malet, J. P., et al., 2013. Time-Variable 3D Ground Displacements from High-Resolution Synthetic Aperture Radar (SAR): Application to La Valette Landslide (South French Alps). Remote Sensing of Environment, 139: 198-204. doi: 10.1016/j.rse.2013.08.006
      Wang, X. L., Du, Y. L., Jiang, J. X., et al., 2021. Monitoring of Temporal and Spatial Evolution of Surface Deformation in Yuncheng Mining Area with DS-InSAR. Safety in Coal Mines, 52(5): 120-125 (in Chinese with English abstract).
      Wang, X. M., Yin, J., Luo, M. H., et al., 2021. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. Journal of Earth Science: 1-39.
      Wang, X. W., Liu, G. X., Yu, B., et al., 2014.3D Coseismic Deformations and Source Parameters of the 2010 Yushu Earthquake (China) Inferred from D InSAR and Multiple-Aperture InSAR Measurements. Remote Sensing of Environment, 152: 174-189. doi: 10.1016/j.rse.2014.06.014
      Wang, Z. D., Wen, X. H., Tang, W., et al., 2020. Early Detection of Geological Hazards in Longmenshan‐Dadu River Area Using Various InSAR Techniques. Geomatics and Information Science of Wuhan University, 45(3): 451-459 (in Chinese with English abstract).
      Wu, H., Fan, H. D., Zhen, C. L, et al., 2022. Deformation Monitoring and Analysis of Tailings Dam Based on DS-InSAR: A Case Study of Brumadinho Mine in Brazil. Metal Mine (in Chinese with English abstract).
      Xie, M. L., Zhao, J. J., Ju, N. P., et al., 2020. Research on Temporal and Spatial Evolution of Landslide Based on Multisource Data: A Case Study of Huangnibazi Landslide. Geomatics and Information Science of Wuhan University, 45(6): 923-932 (in Chinese with English abstract).
      Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract).
      Xu, X. B., Ma, C., Shan, X. J., et al., 2020. Monitoring Ground Subsidence in High-Intensity Mining Area by Integrating D InSAR and Offset-Tracking Technology. Journal of Geo-Information Science, 22(12): 2425-2435 (in Chinese with English abstract).
      Yang, C. S., Zhang, Q., Zhao, C. Y., et al., 2014. Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring. Geomatics and Information Science of Wuhan University, 39(8): 945-950 (in Chinese with English abstract).
      Zhang, L., Liao, M. S., Dong, J., et al., 2018. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan. Geomatics and Information Science of Wuhan University, 43(12): 2039-2049 (in Chinese with English abstract).
      Zhao, G. P., 2016. Structure Character Research of the Daliang Mountain in the Southern Margin of Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 7-8 (in Chinese with English abstract).
      Zhou, D. Y., Zuo, X. Q., Xi, W. F., et al., 2022. Early Identification of Landslide Hazards in Deep Cut Alpine Canyon Using SBAS-InSAR Technology. The Chinese Journal of Geological Hazard and Control, 33(2): 16-24 (in Chinese with English abstract).
      Zhuo, G. C., Dai, K. R., Zhou, F. J., et al., 2021. Monitoring Typical Construction Sites of Sichuan-Tibet Railway by InSAR and Intensive Distortion Analysis. Earth Science (in Chinese with English abstract).
      黄锐, 韩建强, 李进田, 等, 2021. PS-InSAR技术在中缅油气管道沉降监测中的应用研究. 激光与光电子学进展, 59(16): 1628006. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202216053.htm
      蒋金雄, 杜玉玲, 陈宇, 等, 2021. 利用DS-InSAR技术监测沛北矿区地表形变. 测绘通报, (2): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202102024.htm
      江克贵, 王磊, 滕超群, 2021. 融合单视线D-InSAR和BK模型的煤矿地表三维变形动态监测方法研究. 武汉大学学报(信息科学版). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202304015.htm
      李帅, 温建生, 胡海峰, 2021. 融合InSAR技术的矿区大梯度形变研究. 测绘科学, 46(11): 56-62, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202111009.htm
      李晓恩, 周亮, 苏奋振, 等, 2021. InSAR技术在滑坡灾害中的应用研究进展. 遥感学报, 25(2): 614-629. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102008.htm
      李振洪, 宋闯, 余琛, 等, 2019. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策. 武汉大学学报(信息科学版), 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
      林珲, 马培峰, 王伟玺, 2017. 监测城市基础设施健康的星载MT-InSAR方法介绍. 测绘学报, 46(10): 1421-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710026.htm
      刘国祥, 陈强, 罗小军, 等, 2019. InSAR原理与应用. 北京: 科学出版社, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201520027.htm
      刘沛源, 常鸣, 武彬彬, 等, 2022. 基于SBAS-InSAR技术的成汶高速汶川段滑坡易发区选线研究. 地球科学, 47(6): 2048-2057. doi: 10.3799/dqkx.2022.069
      王新玲, 杜玉玲, 蒋金雄, 等, 2021. 郓城矿区地表形变时空演变DS-InSAR监测. 煤矿安全, 52(5): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202105020.htm
      王之栋, 文学虎, 唐伟, 等, 2020. 联合多种InSAR技术的龙门山‒大渡河区域地灾隐患早期探测. 武汉大学学报(信息科学版), 45(3): 451-459. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202003017.htm
      吴昊, 范洪冬, 郑春柳, 等, 2022. 基于DS-InSAR的尾矿库变形监测与分析——以巴西Brumadinho矿为例. 金属矿山.
      解明礼, 赵建军, 巨能攀, 等, 2020. 多源数据滑坡时空演化规律研究: 以黄泥坝子滑坡为例. 武汉大学学报(信息科学版), 45(6): 923-932. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202006016.htm
      许强, 董秀军, 李为乐, 2019. 基于天‒空‒地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      徐小波, 马超, 单新建, 等, 2020. 联合D InSAR与Offset-tracking技术监测高强度采区开采沉陷的方法. 地球信息科学学报, 22(12): 2425-2435. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202012014.htm
      杨成生, 张勤, 赵超英, 等, 2014. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测. 武汉大学学报(信息科学版), 39(8): 945-950. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201408012.htm
      张路, 廖明生, 董杰, 等, 2018. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别: 以四川丹巴为例. 武汉大学学报(信息科学版), 43(12): 2039-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812031.htm
      赵高平, 2016. 四川盆地南缘大凉山地区构造特征研究(硕士学位论文). 成都: 成都理工大学, 7-8.
      周定义, 左小清, 喜文飞, 等, 2022. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别. 中国地质灾害与防治学报, 33(2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202003.htm
      卓冠晨, 戴可人, 周福军, 等, 2021. 川藏铁路典型工点InSAR监测及几何畸变精细判识. 地球科学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(20)  / Tables(4)

      Article views (1304) PDF downloads(148) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return