Citation: | Zhang Wengang, He Yuwei, Wang Luqi, Liu Songlin, Chen Bolin, 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: Case Study of Fengjie County in Chongqing. Earth Science, 48(5): 2024-2038. doi: 10.3799/dqkx.2022.309 |
Ali, S. K. A., Parvin, F., Pham, Q. B., et al., 2022. An Ensemble Random Forest Tree with SVM, ANN, NBT, and LMT for Landslide Susceptibility Mapping in the Rangit River Watershed, India. Natural Hazards, 113(3): 1601-1633. https://doi.org/10.1007/s11069-022-05360-5
|
Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., et al., 2019. Assessment of the Importance of Gully Erosion Effective Factors Using Boruta Algorithm and Its Spatial Modeling and Mapping Using Three Machine Learning Algorithms. Geoderma, 340: 55-69. https://doi. org/10.1016/j. geoderma. 2018.12. 042. doi: 10.1016/j.geoderma.2018.12.042
|
Bai, S. B., Wang, J., Lu, G. N., et al., 2010. GIS-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China. Geomorphology, 115(1-2): 23-31. https://doi.org/10.1016/j.geomorph.2009.09.025
|
Basu, T., Pal, S., 2018. Identification of Landslide Susceptibility Zones in Gish River Basin, West Bengal, India. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1): 14-28. https://doi.org/10.1080/17499518.2017.1343482
|
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/a:1010933404324
|
Chen, T., Zhu, L., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility at the Three Gorges Reservoir, China, Using Gradient Boosting Decision Tree, Random Forest and Information Value Models. Journal of Mountain Science, 17(3): 670-685. https://doi.org/10.1007/s11629-019-5839-3
|
Das, A. M., Kumar, N. S., Kanti, M. S., 2011. Landslide Hazard and Risk Analysis in India at a Regional Scale. Disaster Advances, 4(2): 26-39. http://www.researchgate.net/publication/287631967_Landslide_Hazard_and_Risk_Analysis_in_India_at_a_Regional_Scale
|
Guo, Z. Z., Yin, K. L., Huang, F. M., et al., 2019. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201902007.htm
|
Havenith, H. B., Torgoev, A., Schlogel, R., et al., 2015. Tien Shan Geohazards Database: Landslide Susceptibility Analysis. Geomorphology, 249: 32-43. https://doi.org/10.1016/j.geomorph.2015.03.019
|
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract).
|
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0169555X22001295
|
Huang, F. M., Wang, Y., Dong, Z. l., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
|
Khamkar, D. J., Mhaske, S. Y., 2019. Identification of Landslide Susceptible Settlements Using Geographical Information System of Yelwandi River Basin, Maharashtra (India). Natural Hazards, 96(3): 1263-1287. https://doi.org/10.1007/s11069-019-03609-0
|
Li, S. L., Xu, Q., Tang, M. G., et al., 2019. Characterizing the Spatial Distribution and Fundamental Controls of Landslides in the Three Gorges Reservoir Area, China. Bulletin of Engineering Geology and the Environment, 78(6): 4275-4290. https://doi.org/10.1007/s10064-018-1404-5
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
|
Li, Y. W., Wang, X. M., Mao, H., 2020. Influence of Human Activity on Landslide Susceptibility Development in the Three Gorges Area. Natural Hazards, 104(3): 2115-2151. https://doi.org/10.1007/s11069-020-04264-6
|
Long, J. J., Liu, Y., Li, C. D., et al., 2021. A Novel Model for Regional Susceptibility Mapping of Rainfall Reservoir Induced Landslides in Jurassic Slide-Prone Strata of Western Hubei Province, Three Gorges Reservoir Area. Stochastic Environmental Research and Risk Assessment, 35(7): 1403-1426. https://doi.org/10.1007/s00477-020-01892-z
|
Sajadi, P., Sang, Y. F., Gholamnia, M., et al., 2022. Evaluation of the Landslide Susceptibility and Its Spatial Difference in the Whole Qinghai-Tibetan Plateau Region by Five Learning Algorithms. Geoscience Letters, 9(1): 9. https://doi.org/10.1186/s40562-022-00218-x
|
Shou, K. J., Chen, J. R., 2021. On the Rainfall Induced Deep-Seated and Shallow Landslide Hazard in Taiwan. Engineering Geology, 288. https://doi.org/10.1016/j.enggeo.2021.106156
|
Sun, D. L., Gu, Q. Y., Wen, H. J., et al., 2022. A Hybrid Landslide Warning Model Coupling Susceptibility Zoning and Precipitation. Forests, 13: 827. https://doi.org/10.3390/f13060827
|
Sun, D. L., Xu, J. H., Wen, H. J., et al., 2021. Assessment of Landslide Susceptibility Mapping Based on Bayesian Hyperparameter Optimization: A Comparison between Logistic Regression and Random Forest. Engineering Geology, 281. https://doi.org/10.1016/j.enggeo.2020.105972
|
Van Den Eeckhaut, M., Marre, A., Poesen, J., 2010. Comparison of Two Landslide Susceptibility Assessments in the Champagne-Ardenne Region (France). Geomorphology, 115(1-2): 141-55. https://doi.org/10.1016/j.geomorph.2009.09.042
|
Wang, J. G., Schweizer, D., Liu, Q. B., et al., 2021a. Three-Dimensional Landslide Evolution Model at the Yangtze River. Engineering Geology, 292. https://doi.org/10.1016/j.enggeo.2021.106275
|
Wang, L. Q., Zhang, Z. H., Huang, B. L., et al., 2021b. Triggering Mechanism and Possible Evolution Process of the Ancient Qingshi Landslide in the Three Gorges Reservoir. Geomatics, Natural Hazards and Risk, 12(1): 3160-3174. https://doi.org/10.1080/19475705.2021.1998230
|
Wang, M., Qiao, J. P., 2013. Reservoir-Landslide Hazard Assessment Based on Gis: A Case Study in Wanzhou Section of the Three Gorges Reservoir. Journal of Mountain Science, 10(6): 1085-1096. https://doi.org/10.1007/s11629-013-2498-7
|
Weidner, L., DePrekel, K., Oommen, T., et al., 2019. Investigating Large Landslides along a River Valley Using Combined Physical, Statistical, and Hydrologic Modeling. Engineering Geology, 259. https://doi.org/10.1016/j.enggeo.2019.105169
|
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
|
Xiao, T., 2020. Landslide Risk Assessment in Wanzhou District and a Key Section, Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Xu, X. J., Yang, Q., 2014. Study of Reservoir-Accumulative Landslide's Stability Evolution Trend in the Three Gorges Reservoir. Paper Presented at the 5th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Zhangjiajie.
|
Yang, B. B., Yin, K. L., Lacasse, S., et al., 2019. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides, 16(4): 677-694. https://doi.org/10.1007/s10346-018-01127-x
|
Ye, R. Q., Li, S. Y., Guo, F., et al., 2021. RS and GIS Analysis on Relationship between Landslide Susceptibility and Land Use Change in Three Gorges Reservoir Area. Journal of Engineering Geology, 29(3): 724-733 (in Chinese with English abstract).
|
Yin, Y. P., Wang, L. Q., Zhao, P., et al., 2022. Crashed Failure Mechanism & Prevention of Fractured High-Steep Slope in the Three Gorges Reservoir, China. Journal of Hydraulic Engineering, 53(4): 379-391 (in Chinese with English abstract).
|
Yu, X. Y., Wang, Y., Niu, R. Q., et al., 2016. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China. International Journal of Environmental Research and Public Health, 13(5): 487. https://doi.org/10.3390/ijerph13050487
|
Zhang, H. J., Song, Y. X., Xu, S. L., et al., 2022. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158. https://doi.org/10.1016/j.cageo.2021.104966.
|
Zhang, K. Q., Wang, L. Q., Zhang, W. G., et al., 2021. Formation and Failure Mechanism of the Xinfangzi Landslide in Chongqing City (China). Applied Sciences- Basel, 11(19). https://doi.org/10.3390/app11198963
|
Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Computers & Geosciences, 112: 23-37. https://doi.org/10.1016/j.cageo.2017.11.019
|
Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract).
|
Zhou, X. Z., Wen, H. J., Li, Z. W., et al., 2022. An Interpretable Model for the Susceptibility of Rainfall-Induced Shallow Landslides Based on SHAP and XGBoost. Geocarto International, 37(26): 13419-13450. https://doi.org/10.1080/10106049.2022.2076928
|
Zhu, C. Q., 2014. Landslide Stability and Contol Analysis of Huanglianshu in Fengjie County (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
|
郭子正, 殷坤龙, 黄发明, 等, 2019. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
|
黄发明, 曹昱, 范宣梅, 等, 2021. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S2): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
|
黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
|
黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
|
肖婷, 2020. 三峡库区万州区及重点库岸段滑坡灾害风险评价(博士学位论文). 武汉: 中国地质大学.
|
叶润青, 李士垚, 郭飞, 等, 2021. 基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究. 工程地质学报, 29(3): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103015.htm
|
殷跃平, 王鲁琦, 赵鹏, 等, 2022. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报, 53(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202204001.htm
|
周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
|
朱灿群, 2014. 奉节县黄莲树滑坡稳定性及治理分析(硕士学位论文). 重庆: 重庆大学.
|