• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 4
    Apr.  2024
    Turn off MathJax
    Article Contents
    Du Hailing, Shan Huimei, Huang Jian, Zeng Chunya, Zhang Jinxian, Liu Yunquan, 2024. Experiment on Influence of Flow Velocity and Medium Particle Size on As(Ⅲ) Migration. Earth Science, 49(4): 1459-1469. doi: 10.3799/dqkx.2022.316
    Citation: Du Hailing, Shan Huimei, Huang Jian, Zeng Chunya, Zhang Jinxian, Liu Yunquan, 2024. Experiment on Influence of Flow Velocity and Medium Particle Size on As(Ⅲ) Migration. Earth Science, 49(4): 1459-1469. doi: 10.3799/dqkx.2022.316

    Experiment on Influence of Flow Velocity and Medium Particle Size on As(Ⅲ) Migration

    doi: 10.3799/dqkx.2022.316
    • Received Date: 2022-03-01
      Available Online: 2024-04-30
    • Publish Date: 2024-04-25
    • To understand the influence of groundwater velocity and medium particles on As(Ⅲ) migration in the riparian zone, natural river sand is selected as the medium, and groundwater solutions containing As(Ⅲ) as commonly seen in some riparian zones are prepared to carry out batch experiments and dynamic column experiments. Combing with the characterization analysis, the influence and mechanism of velocity and medium particle size on As(Ⅲ) migration are discussed. The results show follows: (1) The adsorption equilibrium time of As(Ⅲ) is longer for the smaller particle size of river sand. The equilibrium adsorption capacity (Qe) of As (Ⅲ) on the river sand decreases with the increase of its particle sizes (except for river sand with a particle size of 0.15-0.18 mm), and the maximum amount (Qm) of monolayer adsorption shows a decreasing trend with the increase of particle size. (2) As(Ⅲ) migration in the column filled with river sand is significantly affected by the particle size and velocity. On one hand, the river sand of the smaller particle size has a larger specific surface area, which usually leads to longer interaction time between aqueous solutions and solid medium, thus limiting the groundwater flushing rate. This is not conducive to the migration of As(Ⅲ) in river sand. On the other hand, the higher flowing velocity leads to a stronger hydraulic shear force in the void channel. Meanwhile, the increase of turbulence intensity reduces the thickness of the retained boundary layer, which is conducive to the migration of As(Ⅲ) in river sand.

       

    • loading
    • Akpomie, K. G., Dawodu, F. A., Adebowale, K. O., 2015. Mechanism on the Sorption of Heavy Metals from Binary-Solution by a Low Cost Montmorillonite and Its Desorption Potential. Alexandria Engineering Journal, 54(3): 757-767. https://doi.org/10.1016/j.aej.2015.03.025
      Benner, S. G., Polizzotto, M. L., Kocar, B. D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072-3087. https://doi.org/10.1016/j.apgeochem.2008.06.013
      Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2/3): 413-425. https://doi.org/10.1016/j.scitotenv.2006.09.010
      Bouzekri, S., El Hachimi, M. L., Touach, N., et al., 2019. The Study of Metal (As, Cd, Pb, Zn and Cu) Contamination in Superficial Stream Sediments around of Zaida Mine (High Moulouya-Morocco). Journal of African Earth Sciences, 154: 49-58. https://doi.org/10.1016/j.jafrearsci.2019.03.014
      Cao, Y. S., Guo, H. M., Ni, P., et al., 2017. Influences of Sediments Geochemical Characteristics and Land Utilization on Groundwater Arsenic Activities. Earth Science Frontiers, 24(2): 274-285(in Chinese with English abstract).
      Chen, H. S., Sun, Z. Y., Shao, J. C., 2011. Investigation on FT-IR Spectroscopy for Eight Different Sources of SiO2. Bulletin of the Chinese Ceramic Society, 30(4): 934-937(in Chinese with English abstract).
      Chen, Z., 2018. Study on the Contaminant Migration in the Layered Heterogeneous Aquifers during the Pollution and Hydrodynamics Remediation Process (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Freikowski, D., Neidhardt, H., Winter, J., et al., 2013. Effect of Carbon Sources and of Sulfate on Microbial Arsenic Mobilization in Sediments of West Bengal, India. Ecotoxicology and Environmental Safety, 91: 139-146. https://doi.org/10.1016/j.ecoenv.2013.01.021
      Gerdelidani, A. F., Towfighi, H., Shahbazi, K., et al., 2021. Arsenic Geochemistry and Mineralogy as a Function of Particle-Size in Naturally Arsenic-Enriched Soils. Journal of Hazardous Materials, 403: 123931. https://doi.org/10.1016/j.jhazmat.2020.123931
      Goldberg, S., Johnston, C. T., 2001. Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. Journal of Colloid and Interface Science, 234(1): 204-216. https://doi.org/10.1006/jcis.2000.7295
      Gude, J. C. J., Rietveld, L. C., van Halem, D., 2018. As(Ⅲ) Removal in Rapid Filters: Effect of pH, Fe(II)/Fe(Ⅲ), Filtration Velocity and Media Size. Water Research, 147: 342-349. https://doi.org/10.1016/j.watres.2018.10.005
      Guo, H. M., Ni, P., Jia, Y. F., et al., 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract).
      Guo, H. M., Zhang, D., Ni, P., et al., 2017. On the Scalability of Hydrogeochemical Factors Controlling Arsenic Mobility in Three Major Inland Basins of P. R. China. Applied Geochemistry, 77: 15-23. https://doi.org/10.1016/j.apgeochem.2016.05.006
      He, J. W., Li, W. X., Chen, S., et al., 2019. Comparison of Removal and Migration Behavior of As(Ⅴ) and As(Ⅲ) in Solution on Taojiang Manganese Ore, Hunan Province. Environmental Chemistry, 38(8): 1801-1810(in Chinese with English abstract).
      He, M. J., Yang, Z. H., Wei, S. Q., 2019. Absorption Characterization and the Identification of Factors Influencing Five Organophosphate Esters in Water-Soil System. Huanjing Kexue, 40(10): 4604-4610. https://doi.org/10.13227/j.hjkx.201903215
      Ho, Y. S., McKay, G., 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry, 34(5): 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
      Huang, T. L., 1995. Kinetics and Experimental Study on Heavy Metal Release from Water Sediments. Acta Scientiae Circumstantiae, 15(4): 440-446 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2468.1995.04.001
      Lagergren, S., 1898. Zur Theorie Der Sogenannten Adsorption Gelster Stoffe. Kungliga Svenska Vetenskapsakademiens, 24: 1-39. http://doi.org/10.1007/BF01501332
      Langmuir, I., 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40: 1361-1403. https://doi.org/10.1021/JA02242A004
      Liao, D. X., Shan, H. M., Peng, S. X., et al., 2020. Characteristics and Mechanism of Monothioarsenate Adsorption on Sand, Sediment, and Goethite. Environmental Science, 41(1): 284-292 (in Chinese with English abstract).
      Lin, T. Y., Hafeznezami, S., Rice, L., et al., 2017. Arsenic Oxyanion Binding to NOM from Dung and Aquaculture Pond Sediments in Bangladesh: Importance of Site-Specific Binding Constants. Applied Geochemistry, 78: 234-240. https://doi.org/10.1016/j.apgeochem.2016.12.026
      Liu, C. X., Shang, J. Y., Shan, H. M., et al., 2014. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption. Environmental Science & Technology, 48(3): 1745-1752. https://doi.org/10.1021/es404224j
      Low, M., 1960. Kinetics of Chemisorption of Gases on Solids. Chemical Reviews, 60(3): 267-312. http://doi.org/10.1021/cr60205a003
      Lu, C. P., 2014. Study on the Synthesis of Magnetic Polystyrene Based Macroporous Resins and Their Adsorption Performance to Metal Ions in Aqueous Solution (Dissertation). Lanzhou University of Technology, Lanzhou (in Chinese with English abstract).
      Mandal, B. K., Suzuki, K. T., 2002. Arsenic Round the World: A Review. Talanta, 58(1): 201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
      Michael, H. A., Khan, M. R., 2016. Impacts of Physical and Chemical Aquifer Heterogeneity on Basin-Scale Solute Transport: Vulnerability of Deep Groundwater to Arsenic Contamination in Bangladesh. Advances in Water Resources, 98: 147-158. https://doi.org/10.1016/j.advwatres.2016.10.010
      Namasivayam, C., Senthilkumar, S., 1998. Removal of Arsenic (V) from Aqueous Solution Using Industrial Solid Waste: Adsorption Rates and Equilibrium Studies. Industrial & Engineering Chemistry Research, 37(12): 4816-4822. https://doi.org/10.1021/ie970774x
      Park, S. G., Yahata, H., Saeki, K., et al., 2009. Physical Properties of Water Treatment Residue and Their Effects on Plant Growth as a Substitute Soil. Journal of the Faculty of Agriculture, Kyushu University, 54(2): 481-487. http://doi.org/10.1017/S002185960999013X
      Rahman, M. M., Naidu, R., Bhattacharya, P., 2009. Arsenic Contamination in Groundwater in the Southeast Asia Region. Environmental Geochemistry and Health, 31(1): 9-21. https://doi.org/10.1007/s10653-008-9233-2
      Shang, J. Y., Liu, C. X., Wang, Z. M., et al., 2011. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Environmental Science & Technology, 45(14): 6025-6031. https://doi.org/10.1021/es200920k
      Stolze, L., Rolle, M., 2022. Surface Complexation Reactions in Sandy Porous Media: Effects of Incomplete Mixing and Mass-Transfer Limitations in Flow-through Systems. Journal of Contaminant Hydrology, 246: 103965. https://doi.org/10.1016/j.jconhyd.2022.103965
      Sun, D. Y., Zhu, D. B., 2019. Environment Contrast and Genesis Analysis of High Arsenic Groundwater in the Northwestern China. Resources Environment & Engineering, 33(3): 387-390 (in Chinese with English abstract).
      Wang, Y., Shen, F., Qi, X. H., 2016. A Corn Stalk-Derived Porous Carbonaceous Adsorbent for Adsorption of Ionic Liquids from Aqueous Solution. RSC Advances, 6(39): 32505-32513. https://doi.org/10.1039/C6RA06908H
      Weber, W. J., Morris, J. C., 1963. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2): 31-59. https://doi.org/10.1061/JSEDAI.0000430
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Yamani, J. S., Lounsbury, A. W., Zimmerman, J. B., 2016. Towards a Selective Adsorbent for Arsenate and Selenite in the Presence of Phosphate: Assessment of Adsorption Efficiency, Mechanism, and Binary Separation Factors of the Chitosan-Copper Complex. Water Research, 88: 889-896. https://doi.org/10.1016/j.watres.2015.11.017
      Yu, Q., Zhang, Y., Dong, T., et al., 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431(in Chinese with English abstract).
      Zhang, L., Guo, C. H., Ran, H. Z., et al., 2021. Particle Size and Occurrence Characteristics of Arsenic in River Sediments of Arsenic-Bearing Mine Areas. Environmental Engineering, 39(12): 38-43, 119(in Chinese with English abstract).
      Zhi, C. S., Chen, H. H., Li, P., et al., 2019. Spatial Distribution of Arsenic along Groundwater Flow Path in Chaobai River Alluvial-Proluvial Fan, North China Plain. Environmental Earth Sciences, 78(8): 259. https://doi.org/10.1007/s12665-019-8260-x
      曹永生, 郭华明, 倪萍, 等, 2017. 沉积物地球化学特征和土地利用方式对地下水砷行为的影响. 地学前缘, 24(2): 274-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702034.htm
      陈和生, 孙振亚, 邵景昌, 2011. 八种不同来源二氧化硅的红外光谱特征研究. 硅酸盐通报, 30(4): 934-937.
      陈震, 2018. 层状非均质含水层污染与水动力修复过程中污染物的迁移规律研究(硕士学位论文). 长春: 吉林大学.
      郭华明, 倪萍, 贾永锋, 等. 2014. 原生高砷地下水的类型, 化学特征及成因. 地学前缘, 21: 1-12.
      何剑汶, 李文旭, 谌书, 等, 2019. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比. 环境化学, 38(8): 1801-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201908014.htm
      黄廷林, 1995. 水体沉积物中重金属释放动力学及试验研究. 环境科学学报, 15(4): 440-446. doi: 10.3321/j.issn:0253-2468.1995.04.001
      廖丹雪, 单慧媚, 彭三曦, 等, 2020. 一硫代砷酸盐在介质上的吸附特征及机制. 环境科学, 41(1): 284-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001032.htm
      路翠萍, 2014. 磁性聚苯乙烯基大孔树脂的制备及对水溶液中金属离子的吸附性能研究(硕士学位论文). 兰州: 兰州理工大学.
      孙丹阳, 朱东波, 2019. 中国西北地区高砷地下水赋存环境对比及其成因分析. 资源环境与工程, 33(3): 387-390. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201903019.htm
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      余倩, 张宇, 董听, 等, 2023. 地表水-地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
      张鹂, 郭朝晖, 冉洪珍, 等. 2021. 含砷矿区河流沉积物粒径组成及砷赋存特征. 环境工程, 39(12): 38-43, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202112006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(5)

      Article views (56) PDF downloads(1) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return