• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Wang Peng, 2024. Advanced Detection Technology of Ground-Borehole DC Resistivity Method. Earth Science, 49(1): 324-334. doi: 10.3799/dqkx.2022.322
    Citation: Wang Peng, 2024. Advanced Detection Technology of Ground-Borehole DC Resistivity Method. Earth Science, 49(1): 324-334. doi: 10.3799/dqkx.2022.322

    Advanced Detection Technology of Ground-Borehole DC Resistivity Method

    doi: 10.3799/dqkx.2022.322
    • Received Date: 2022-08-15
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • A ground-borehole direct current (DC) method which supplies DC power on the ground and receives potential difference in the borehole is presented, in order to achieve long-distance, high-precision advanced detection of hidden aquifers in front of coal mine tunneling roadways. The results of the model calculation show follows: (1) The apparent resistivity abnormal curve shows the abnormal characteristics of positive and negative alternations. The alternation order of high electrical resistivity and low electrical resistivity is opposite, the alternation order of positive and negative anomalies is determined by the relative position of the ground power supply point, survey line and abnormal target. (2) The distance between the ground power supply point and the abnormal body is negatively correlated with the abnormal response amplitude, and the abnormal body size is positively correlated with the abnormal width. (3) The anomaly center position, relative line orientation and anomaly body width can be interpreted according to the apparent resistivity curve, and a fast interpretation method is proposed. (4) A ground similarity simulation is tested to verify the theoretical response results and interpretation methods. The high and low electrical resistivity response characteristics are consistent with the theoretical results, and the abnormal target information determined by the fast interpretation method is basically consistent with the actual situation. Theoretical analysis and similarity test show that the ground-borehole DC method can effectively detect the electrical anomalies on the side of the borehole, it can realize "one hole and multi-use", and provide a new geophysical exploration method for long-distance and high-precision advanced fine exploration.

       

    • loading
    • Chen, B., Wang, Y., Hu, X. Y., et al., 2020. Marine Electrical Resistivity Tomography Research in Pearl River Estuary of Greater Bay Area. Earth Science, 45(12): 4550-4562 (in Chinese with English abstract).
      Cheng, J. L., Yu, S. J., 2000. Simulation Experiment on the Response of Resistivity to Deformation and Failure of Overburden. Chinese Journal of Geophysics, 43(5): 699-706 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2000.05.014
      Cheng, J. Y., Lu, Z. Q., Jiang, B. C., et al., 2022. A Novel Technology of "Long Excavation/Long Detection" for Rapid Excavation in Coal Mine Roadway. Journal of China Coal Society, 47(1): 404-412 (in Chinese with English abstract).
      Dong, S. N., 2010. Some Key Scientific Problems on Water Hazards Frequently Happened in China's Coal Mines. Journal of China Coal Society, 35(1): 66-71 (in Chinese with English abstract).
      Fan, T., Zhang, Y. Z., Zhao, R., et al., 2021. Advance Detection Method of Rapid Excavation Based on Borehole TEM Intelligent Stereo Imaging. Journal of China Coal Society, 46(2): 578-590 (in Chinese with English abstract).
      Fan, T., Zhao, Z., Wu, H., et al., 2014. Research on Inductance Effect Removing and Curve Offset for Mine TEM with Multi Small Loops. Journal of China Coal Society, 39(5): 932-940 (in Chinese with English abstract).
      Han, D. P., Li, D., Cheng, J. L., et al., 2010. DC Method of Advanced Detecting Disastrous Water-Conducting or Water-Bearing Geological Structures along Same Layer. Journal of China Coal Society, 35(4): 635-639 (in Chinese with English abstract).
      Huang, J. G., Wang, J. L., Ruan, B. Y, 2006. A Study on Advanced Detection Using DC Resistivity Method in Tunnel. Chinese Journal of Geophysics, 49(5): 1529-1538 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2006.05.035
      Li, B. F., Liu, L., Fan, T., et al., 2022. Resistivity Detection and Its Application in Underground Coal Mine Directional Boreholes. Coal Geology & Exploration, 50(1): 52-58 (in Chinese with English abstract).
      Liu, S. C., Chen, S. S., Xu, K., 2017. Detection Technology of Ground-Roadway DC Resistivity Method. Journal of China Coal Society, 42(2): 360-366 (in Chinese with English abstract).
      Liu, Y. N., 2014. Study on Application Effect of Mine Transient Electromagnetic Technology under the Metal Interference (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      Lu, J. J., 2010. Studies of Multigrid Algorithm for 3D Geo-Electromagnetic Modeling and Its Applications (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).
      Luo, G. P., 2017. Effectiveness of DC Resistivity Trielectrode Advanced Prospecting. Coal Geology of China, 29(3): 72-75 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2017.03.15
      Ma, C., Dai, G. S., Cao, G. M., 2015. Application of Efficient Fast Driving System in Daliuta Coal Mine. Coal Engineering, 47(12): 34-37 (in Chinese with English abstract).
      National Coal Mine Safety Administration, 2011. Prevention and Control Technology of Coal Mine Water Disaster in China. China University of Mining and Technology Press, Xuzhou (in Chinese).
      Niu, C., 2011. Study of Infinite Pole Influence and Correction Technique in Resistivity Method (Dissertation). Shandong University of Science and Technology, Qingdao (in Chinese with English abstract).
      Qiang, J. K., Ruan, B. Y., Zhou, J. J., et al., 2011. The Feasibility of Advanced Detection Using DC Three-Electrode Method in Coal-Mine Tunnel. Progress in Geophysics, 26(1): 320-326 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2011.01.038
      Shi, X. F., 2016. Numerical Simulation of Influencing Factors in Advance DC Electric Detection in Coal Mines. Coal Technology, 35(11): 122-124 (in Chinese with English abstract).
      Sun, H. F., Cheng, M., Su, C. X., et al., 2017. Tunnel Face-Borehole Transient Electromagnetic Method and Its Physical Experimental Studies. Journal of China Coal Society, 42(8): 2110-2115 (in Chinese with English abstract).
      Sun, W. J., Han, Q., Yang, H., et al., 2017. Analysis on Water Inrush Accidents in China's Coal Mines 2000-2015. Coal Engineering, 49(5): 95-98 (in Chinese with English abstract).
      Wang, J., Liu, B. Z., Lei, Y. J., et al., 2021. Application of Complete Equipment for Intelligent Rapid Excavation and Anchoring in Caojiatan Coal Mine. Shaanxi Coal, 40(1): 1-3, 40 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-749X.2021.01.002
      Wang, P., 2017a. Study on Floating Coefficient Space Intersection and Equivalent Current Loop Inversion of Downhole TEM (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, P., 2017b. Feasibility Research on Ground-Roadway Combined Transient Electromagnetic Method. China Coal, 43(2): 28-32 (in Chinese with English abstract).
      Wang, P., Cheng, J. Y., Yao, W. H., et al., 2019. Technology of Detecting Water-Filled Goaf beside Borehole Using Downhole Transient Electromagnetic Method. Journal of China Coal Society, 44(8): 2502-2508 (in Chinese with English abstract).
      Wang, X. C., Zhi, Q. Q., Zhang, J., et al., 2023. Application of Transient Electromagnetic Method in Investigation of Underground Water in Xiongan New Area. Earth Science, 48(11): 4243-4255 (in Chinese with English abstract).
      Yao, W. H., Wang, P., Li, M. X., et al., 2019. Numerical Simulation Response Characteristics of Down-Hole TEM for Advanced Detection. Journal of China Coal Society, 44(10): 3145-3153 (in Chinese with English abstract).
      Yue, J. H., Zhang, H. R., Yang, H. Y., et al., 2019. Electrical Prospecting Methods for Advance Detection: Progress, Problems, and Prospects in Chinese Coal Mines. IEEE Geoscience and Remote Sensing Magazine, 7(3): 94-106. https://doi.org/10.1109/MGRS.2018.2890677
      Zhao, X. S., 2007. Present Status and Development Tendency of High Efficient Roadway Driving Technology in Coal Mine. Coal Science and Technology, 35(4): 1-10 (in Chinese with English abstract).
      陈斌, 汪耀, 胡祥云, 等, 2020. 大湾区珠江口海上高密度电法探测. 地球科学, 45(12): 4550-4562. doi: 10.3799/dqkx.2020.289
      程久龙, 于师建, 2000. 覆岩变形破坏电阻率响应特征的模拟实验研究. 地球物理学报, 43(5): 699-706. doi: 10.3321/j.issn:0001-5733.2000.05.014
      程建远, 陆自清, 蒋必辞, 等, 2022. 煤矿巷道快速掘进的"长掘长探"技术. 煤炭学报, 47(1): 404-412.
      董书宁, 2010. 对中国煤矿水害频发的几个关键科学问题的探讨. 煤炭学报, 35(1): 66-71.
      范涛, 张幼振, 赵睿, 等, 2021. 基于钻孔TEM智能立体成像的快速掘进超前探测方法. 煤炭学报, 46(2): 578-590.
      范涛, 赵兆, 吴海, 等, 2014. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究. 煤炭学报, 39(5): 932-940.
      国家煤矿安全监察局, 2011. 中国煤矿水害防治技术. 徐州: 中国矿业大学出版社.
      韩德品, 李丹, 程久龙, 等, 2010. 超前探测灾害性含导水地质构造的直流电法. 煤炭学报, 35(4): 635-639.
      黄俊革, 王家林, 阮百尧, 2006. 坑道直流电阻率法超前探测研究. 地球物理学报, 49(5): 1529-1538. doi: 10.3321/j.issn:0001-5733.2006.05.035
      李博凡, 刘磊, 范涛, 等, 2022. 煤矿井下定向钻孔中电阻率探测技术与应用. 煤田地质与勘探, 50(1): 52-58.
      刘树才, 陈爽爽, 许可, 2017. 地面-巷道直流电阻率法探测技术. 煤炭学报, 42(2): 360-366.
      刘耀宁, 2014. 金属干扰环境下矿井瞬变电磁技术应用效果研究(硕士学位论文). 徐州: 中国矿业大学.
      鲁晶津, 2010. 地球电磁三维数值模拟的多重网格方法及其应用研究(博士学位论文). 合肥: 中国科学技术大学.
      罗国平, 2017. 直流电阻率三极超前探测的有效性. 中国煤炭地质, 29(3): 72-75. doi: 10.3969/j.issn.1674-1803.2017.03.15
      马超, 代贵生, 曹光明, 2015. 快速掘进系统在大柳塔煤矿的应用. 煤炭工程, 47(12): 34-37.
      牛超, 2011. 直流电法勘探中无穷远极影响及校正技术研究(硕士学位论文). 青岛: 山东科技大学.
      强建科, 阮百尧, 周俊杰, 等, 2011. 煤矿巷道直流三极法超前探测的可行性. 地球物理学进展, 26(1): 320-326. doi: 10.3969/j.issn.1004-2903.2011.01.038
      石学锋, 2016. 矿井直流电法超前探测影响因素数值模拟. 煤炭技术, 35(11): 122-124.
      孙怀凤, 程铭, 宿传玺, 等, 2017. 隧(巷)道掘进工作面-钻孔瞬变电磁超前探测方法物理模拟试验研究. 煤炭学报, 42(8): 2110-2115.
      孙文洁, 韩权, 杨恒, 等, 2017.2000-2015年我国煤矿水害事故特征分析. 煤炭工程, 49(5): 95-98.
      王剑, 刘备战, 雷亚军, 等, 2021. 曹家滩煤矿智能快速掘锚成套装备应用. 陕西煤炭, 40(1): 1-3, 40. doi: 10.3969/j.issn.1671-749X.2021.01.002
      王鹏, 2017a. 井-地瞬变电磁法浮动系数空间交汇与等效电流环反演方法研究(博士学位论文). 武汉: 中国地质大学.
      王鹏, 2017b. 地巷联合瞬变电磁法可行性研究. 中国煤炭, 43(2): 28-32.
      王鹏, 程建远, 姚伟华, 等, 2019. 积水采空区地面-钻孔瞬变电磁探测技术. 煤炭学报, 44(8): 2502-2508.
      王兴春, 智庆全, 张杰, 等, 2023. 瞬变电磁法在雄安新区地下水体调查中的应用. 地球科学, 48(11): 4243-4255. doi: 10.3799/dqkx.2022.112
      姚伟华, 王鹏, 李明星, 等, 2019. 地孔瞬变电磁法超前探测数值模拟响应特征. 煤炭学报, 44(10): 3145-3153.
      赵学社, 2007. 煤矿高效掘进技术现状与发展趋势. 煤炭科学技术, 35(4): 1-10.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (237) PDF downloads(41) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return