• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Chen Jianfeng, Du Changcheng, Chen Sixian, Shi Zhenming, Peng Ming, 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325
    Citation: Chen Jianfeng, Du Changcheng, Chen Sixian, Shi Zhenming, Peng Ming, 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325

    Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading

    doi: 10.3799/dqkx.2022.325
    • Received Date: 2022-06-01
      Available Online: 2023-01-10
    • Publish Date: 2022-12-25
    • A numerical model of a landslide stabilized with anti-slide piles and anchor cable frame beams was developed using a three-dimensional finite element program MIDAS/GTS. The factor of safety of the reinforced slope was calculated using the displacement time curve method. The acceleration responses, structural internal forces, and load-sharing rules were analyzed by inputting Wolong seismic waves with different peak ground accelerations(PGA). The results show that the factor of safety of the reinforced slope satisfies the code requirements. A potential shallow slip surface exists in the upper part of the slope, and a potential deep slip surface exists in the middle and lower parts of the slope under the earthquake action. The acceleration of the reinforced slope under seismic loading shows an elevation amplification effect. As the PGA of the input seismic wave increases, the amplification effect is enhanced. The bending moments and shear forces of the anti-slip pile increase when the PGA of the input seismic wave increases. The maximum positive and negative bending moments of the anti-slip pile are located at about 0.7 L(pile length) and 0.4 L from the top of the pile, respectively. The maximum positive and negative shear forces are located at about 0.9 L and 0.7 L from the top of the pile, respectively. When the PGA increases, the load sheared by piles and anchor cables increases gradually. However, the proportion of thrust shared by anti-slip piles increases while the proportion of thrust shared by anchor cables decreases. Thus, the variation of the proportion of thrust shared by anti-slip piles and anchor cables is recommended to be considered in engineering projects.

       

    • Abi, E., Zheng, Y.R., Lai, J., et al., 2016. Study on Supporting Properties of Double-Row Piles with Anchor in Slide of Paifang Dam. Chinese Journal of Underground Space and Engineering, 12(4): 1033-1038(in Chinese with English abstract).
      Chen, J.F., Chen, S.X., Du, C.C., et al., 2021. Research on the Mechanical Mechanism of Composite Structure of Anti-Slide Pile and Anchor Cable Frame Beam. Journal of Railway Engineering Society, 38(5): 7-12(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2021.05.002
      Fu, X., Fan, G., Liu, F.C., et al., 2015. Shaking Table Tests on the Acceleration Response of an Anti-Dip Stratified Rock Slope with Composite Retaining Structure. China Earthquake Engineering Journal, 37(3): 823-828(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2015.03.0823
      Fu, X., Zhang, J.J., Zhou, L.R., 2017. Shaking Table Test of Seismic Response of Slope Reinforced by Combination of Anti-Slide Piles and Multi-Frame Foundation Beam with Anchor Cable. Rock and Soil Mechanics, 38(2): 462-470(in Chinese with English abstract).
      He, C., Tang, H.M., Shen, P.W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract).
      Lai, J., Li, A.H., Zheng, Y.R., et al., 2014. Dynamic Stability Analysis of Slopes Reinforced by Anchor Anti-Slide Pile. China Earthquake Engineering Journal, 36(4): 924-930(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2014.04.0924
      Lai, J., Liu, Y., Xin, J.P., et al., 2020. Shaking Table Test and Numerical Analysis on Reinforced Slope at Dali West Railway Station. Journal of Zhejiang University(Engineering Science), 54(5): 870-878(in Chinese with English abstract).
      Li, D.F., Wang, L.J., 2016. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load. Advances in Materials Science & Engineering. http://doi.org/10.1155/2016/5753970
      Li, H.B., Xiao, K.Q., Liu, Y.Q., 2007. Factor of Safety Analysis of Bedding Rock Slope under Seismic Load. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2385-2394(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.12.002
      Ministry of Natural Resources of the People's Republic of China, 2020. Code for the Design of Landslide Stabilization: GB/T 38509-2020. China Standard Press, Beijing(in Chinese).
      Tang, Y., 2010. Seismic Damage Analysis of Slope Engineering Facilities in Wen Chuan Earthquake (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
      Zhang, L.M., Yue, J.G., Zhang, J.J., et al., 2020. Seismic Behavior of the Composite Retaining Structures in Case of Nuclear Power Plants in High Soft-Rock Slopes under Strong Earthquakes. China Earthquake Engineering Journal, 42(3): 742-750(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2020.03.742
      Zheng, Y.R., Ye, H.L., Huang, R.Q., et al., 2010. Study on the Seismic Stability Analysis of a Slope. Journal of Earthquake Engineering and Engineering Vibration, 30(2): 173-180(in Chinese with English abstract).
      Zhou, D.P., Zhang, J.J., Tang, Y., 2010. Seismic Damage Analysis of Road Slopes in Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(3): 565-576(in Chinese with English abstract).
      Zhu, X., Tang, Y., 2022. Failure Precursory Characteristics of Slope Model with Locked Section. Earth Science, 47(6): 1957-1968(in Chinese with English abstract).
      阿比尔的, 郑颖人, 赖杰, 等, 2016. 牌坊坝滑坡双排桩+锚索支护性能研究. 地下空间与工程学报, 12(4): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201604027.htm
      陈建峰, 陈思贤, 杜长城, 等, 2021. 抗滑桩-锚索框架组合结构受力机制研究. 铁道工程学报, 38(5): 7-12. doi: 10.3969/j.issn.1006-2106.2021.05.002
      付晓, 范刚, 刘飞成, 等, 2015. 组合支护结构作用下反倾层状岩质边坡加速度响应振动台试验研究. 地震工程学报, 37(3): 823-828. doi: 10.3969/j.issn.1000-0844.2015.03.0823
      付晓, 张建经, 周立荣, 2017. 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究. 岩土力学, 38(2): 462-470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702021.htm
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      赖杰, 李安红, 郑颖人, 等, 2014. 锚杆抗滑桩加固边坡工程动力稳定性分析. 地震工程学报, 36(4): 924-930. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201404025.htm
      赖杰, 刘云, 辛建平, 等, 2020. 大理西站支护边坡振动台试验及数值模拟. 浙江大学学报(工学版), 54(5): 870-878. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202005004.htm
      李海波, 肖克强, 刘亚群, 2007. 地震荷载作用下顺层岩质边坡安全系数分析. 岩石力学与工程学报, 26(12): 2385-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712004.htm
      汤涌, 2010. 汶川大地震边坡工程设施震害分析(硕士学位论文). 成都: 西南交通大学.
      张卢明, 岳建国, 张建经, 等, 2020. 强震作用下核电厂顺层软岩高边坡组合支挡结构抗震性能研究. 地震工程学报, 42(3): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202003020.htm
      郑颖人, 叶海林, 黄润秋, 等, 2010. 边坡地震稳定性分析探讨. 地震工程与工程振动, 30(2): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201002028.htm
      周德培, 张建经, 汤涌, 2010. 汶川地震中道路边坡工程震害分析. 岩石力学与工程学报, 29(3): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003019.htm
      中华人民共和国自然资源部, 2020. 滑坡防治设计规范: GB/T 38509-2020. 北京: 中国标准出版社.
      朱星, 唐垚, 2022. 锁固段边坡模型破坏前兆特征. 地球科学, 47(6): 1957-1968. doi: 10.3799/dqkx.2021.204
    • Relative Articles

    • Cited by

      Periodical cited type(10)

      1. 吴育科. 路基边坡预应力锚索抗滑桩支挡结构受力特性和抗震效果有限元分析. 四川水泥. 2024(03): 209-211 .
      2. 冯海洲,蒋关鲁,何梓雷,郭玉丰,何晓龙,刘先峰,胡金山. 框架梁与锚索桩板墙加固隧道洞口边坡的动力响应特性. 中国铁道科学. 2024(02): 134-145 .
      3. 万军利,冯文林. 预应力钢锚管注浆锚索边坡加固力学特性. 科学技术与工程. 2024(14): 6012-6021 .
      4. Chao Xu,Lei Xue,Yuan Cui,Mengyang Zhai. Numerical Analysis of Surcharge Effect on Stability and Interaction Mechanism of Slope-Pile-Footing System. Journal of Earth Science. 2024(03): 955-969 .
      5. 何梓雷,蒋关鲁,冯海洲,潘申鑫,何晓龙,李杰. 地震作用下桩板墙-锚索组合支护基覆型边坡的动力响应特性. 岩土力学. 2024(07): 2011-2023 .
      6. 白宇晨,朱明哲. 预应力锚索抗滑桩在铁路路基边坡加固中的应用分析. 中国设备工程. 2024(15): 224-227 .
      7. 王沛宇,吕润田,缪杰蔚,张崇磊. 强震区抗滑桩加固碎石土边坡动力响应特征与桩身损伤识别:以川青铁路九寨沟双线大桥附近工点为例. 科学技术与工程. 2024(25): 10910-10920 .
      8. 仪龙,王俊杰,黄杰,吕川. 顺层边坡让剪让压型锚拉桩预加固结构承载性能数值模拟研究. 中国农村水利水电. 2024(10): 227-234 .
      9. 贾志波,陶连金,潘菁,任育杰,邱明洋,刘建功,邓力嘉. 基于修正抗滑桩模型的地震边坡稳定性研究. 振动与冲击. 2024(24): 14-23 .
      10. 刘少龙,赵一波,赵剑峰,郭楠,陆发. 等截面装配式框架预应力锚索支护结构承载特性研究及其算法验证. 建筑结构. 2023(S2): 2662-2667 .

      Other cited types(6)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05020406080
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 64.4 %META: 64.4 %PDF: 4.8 %PDF: 4.8 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 1.7 %其他: 1.7 %China: 0.1 %China: 0.1 %Falls Church: 0.5 %Falls Church: 0.5 %St Andrews: 0.2 %St Andrews: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %万隆: 0.5 %万隆: 0.5 %三亚: 0.1 %三亚: 0.1 %上海: 2.7 %上海: 2.7 %东莞: 0.4 %东莞: 0.4 %临汾: 0.2 %临汾: 0.2 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %兰州: 0.4 %兰州: 0.4 %凉山: 0.1 %凉山: 0.1 %北京: 19.6 %北京: 19.6 %十堰: 0.4 %十堰: 0.4 %南京: 0.6 %南京: 0.6 %南宁: 0.1 %南宁: 0.1 %南昌: 0.4 %南昌: 0.4 %南通: 0.2 %南通: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.1 %合肥: 0.1 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.5 %呼和浩特: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %墨尔本: 0.4 %墨尔本: 0.4 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.4 %宣城: 0.4 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.3 %常州: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.2 %张家口: 1.2 %徐州: 0.1 %徐州: 0.1 %德罕: 0.4 %德罕: 0.4 %恩施: 0.1 %恩施: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.5 %扬州: 0.5 %抚州: 0.1 %抚州: 0.1 %昆明: 1.5 %昆明: 1.5 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.4 %杭州: 0.4 %柳州: 0.2 %柳州: 0.2 %梅州: 0.2 %梅州: 0.2 %武汉: 1.9 %武汉: 1.9 %汉中: 0.2 %汉中: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.3 %温州: 0.3 %湖州: 0.4 %湖州: 0.4 %漯河: 1.5 %漯河: 1.5 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %白沙: 0.2 %白沙: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 11.4 %芒廷维尤: 11.4 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.5 %莫斯科: 0.5 %衢州: 0.7 %衢州: 0.7 %西宁: 25.0 %西宁: 25.0 %西安: 0.3 %西安: 0.3 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.2 %达州: 0.2 %运城: 1.0 %运城: 1.0 %邢台: 0.2 %邢台: 0.2 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.6 %重庆: 0.6 %锦州: 0.1 %锦州: 0.1 %长沙: 1.8 %长沙: 1.8 %长治: 0.6 %长治: 0.6 %阳泉: 0.1 %阳泉: 0.1 %雅加达: 0.4 %雅加达: 0.4 %青岛: 0.4 %青岛: 0.4 %鞍山: 0.1 %鞍山: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他其他ChinaFalls ChurchSt AndrewsUnited States[]万隆三亚上海东莞临汾丽水伊犁兰州凉山北京十堰南京南宁南昌南通台州合肥呼伦贝尔呼和浩特哥伦布唐山嘉兴墨尔本大连天津太原宁波安康宣城巴黎常州平顶山广州廊坊张家口徐州德罕恩施成都扬州抚州昆明晋城朝阳杭州柳州梅州武汉汉中沈阳泰安洛阳济南深圳温州湖州漯河烟台珠海白沙石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科衢州西宁西安诺伊达诺沃克贵阳达州运城邢台邯郸郑州鄂州重庆锦州长沙长治阳泉雅加达青岛鞍山马鞍山驻马店黄冈

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(4)

      Article views (1223) PDF downloads(96) Cited by(16)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return