• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 12
    Dec.  2022
    Turn off MathJax
    Article Contents
    Ma Xiandong, Zhou Jian, Zhang Luqing, Huang Fuyou, Li Ruirui, 2022. Dynamic Response Laws of Flexible Rockfall Barriers Based on Movement Characteristics of Rockfall. Earth Science, 47(12): 4559-4573. doi: 10.3799/dqkx.2022.326
    Citation: Ma Xiandong, Zhou Jian, Zhang Luqing, Huang Fuyou, Li Ruirui, 2022. Dynamic Response Laws of Flexible Rockfall Barriers Based on Movement Characteristics of Rockfall. Earth Science, 47(12): 4559-4573. doi: 10.3799/dqkx.2022.326

    Dynamic Response Laws of Flexible Rockfall Barriers Based on Movement Characteristics of Rockfall

    doi: 10.3799/dqkx.2022.326
    • Received Date: 2021-06-30
      Available Online: 2023-01-10
    • Publish Date: 2022-12-25
    • In order to obtain the dynamic response laws of the flexible rockfall barriers under different rockfall movement characteristics, taking the site where the flexible barriers were damaged by rockfall after the Ludian 803 earthquake as an example, the geological survey was carried out through the UAV tilt photogrammetry technology, Rockyfor3D was used to obtain the movement characteristics of the rockfall in the study area. And through the finite element model, the dynamic response laws of the flexible barrier under different rockfall impact forms are studied. The research shows that the bounce heights of rockfall in the area is generally between 1-2 m, and the rockfall on the dominant path will form a scale impact with slightly high speed and low bouncing. Under the scale rockfall impact, the maximum tensile force of the flexible barrier rope can be increased by 123.7%; under the low-bounce rockfall impact, the maximum tensile force of the rope can be increased by 181.2%. The scale rockfall impact will reduce the energy consumption of the flexible barrier net and lead to the increase of the tensile force of the upslope anchor rope. The lower primary support rope of the flexible barrier is more sensitive to the response of different rockfall bounce heights, some high-bounce rockfall will affect the upslope anchor rope and the upper primary support rope.

       

    • loading
    • Bonneau, D. A., DiFrancesco, P. M., Hutchinson, D. J., 2020. A Method for Vegetation Extraction in Mountainous Terrain for Rockfall Simulation. Remote Sensing of Environment, 251: 112098. https://doi.org/10.1016/j.rse.2020.112098
      Bourrier, F., Lambert, S., Baroth, J., 2015. A Reliability⁃Based Approach for the Design of Rockfall Protection Fences. Rock Mechanics and Rock Engineering, 48(1): 247-259. https://doi.org/10.1007/s00603⁃013⁃0540⁃2
      Castanon⁃Jano, L., Blanco⁃Fernandez, E., Castro⁃Fresno, D., et al., 2017. Energy Dissipating Devices in Falling Rock Protection Barriers. Rock Mechanics and Rock Engineering, 50(3): 603-619. https://doi.org/10.1007/s00603⁃016⁃1130⁃x
      Castro⁃Fresno, D., del Coz Diaz, J. J., López, L. A., et al., 2008. Evaluation of the Resistant Capacity of Cable Nets Using the Finite Element Method and Experimental Validation. Engineering Geology, 100(1-2): 1-10. https://doi.org/10.1016/j.enggeo.2008.02.007
      Chen, Z. X., Ye, X., Zhang, W. B., et al., 2019. Formation Mechanism Analysis and Stability Evaluation of Dangerous Rock Collapses Based on the Oblique Photography by Unmanned Aerial Vehicles. China Earthquake Engineering Journal, 41(1): 257-267, 270(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2019.01.257
      Corona, C., Lopez⁃Saez, J., Favillier, A., et al., 2017. Modeling Rockfall Frequency and Bounce Height from Three⁃Dimensional Simulation Process Models and Growth Disturbances in Submontane Broadleaved Trees. Geomorphology, 281: 66-77. https://doi.org/10.1016/j.geomorph.2016.12.019
      Crosta, G. B., Agliardi, F., 2004. Parametric Evaluation of 3D Dispersion of Rockfall Trajectories. Natural Hazards and Earth System Sciences, 4(4): 583-598. https://doi.org/10.5194/nhess⁃4⁃583⁃2004
      Dorren, L. K. A., 2016. Rockyfor3D (v5.2) Revealed⁃Transparent Description of the Complete 3D Rockfall Model. http://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf
      Drews, T., Miernik, G., Anders, K., et al., 2018. Validation of Fracture Data Recognition in Rock Masses by Automated Plane Detection in 3D Point Clouds. International Journal of Rock Mechanics and Mining Sciences, 109: 19-31. https://doi.org/10.1016/j.ijrmms.2018.06.023
      Escallón, J. P., Wendeler, C., Chatzi, E., et al., 2014. Parameter Identification of Rockfall Protection Barrier Components through an Inverse Formulation. Engineering Structures, 77: 1-16. https://doi.org/10.1016/j.engstruct.2014.07.019
      Gentilini, C., Govoni, L., de Miranda, S., et al., 2012. Three⁃Dimensional Numerical Modelling of Falling Rock Protection Barriers. Computers and Geotechnics, 44: 58-72. https://doi.org/10.1016/j.compgeo.2012.03.011
      Guo, Y. Y., Ge, Y. G., Chen, X. C., et al., 2016. Basic Characteristics and Failure Mechanism of the Ganjiazhai Landslide Triggered by the Ludian Earthquake, Yunnan. Mountain Research, 34(5): 530-536(in Chinese with English abstract).
      He, S. M., Wang, D. P., Wu, Y., et al., 2014. Formation Mechanism and Key Prevention Technology of Rockfalls. Chinese Journal of Nature, 36(5): 336-345(in Chinese with English abstract).
      He, S. M., Wu, Y., Li, X. P., 2010. Collapse Mechanism of Danger Rock Triggered by Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 3359-3363(in Chinese with English abstract).
      Jordá Bordehore, L., Riquelme, A., Cano, M., et al., 2017. Comparing Manual and Remote Sensing Field Discontinuity Collection Used in Kinematic Stability Assessment of Failed Rock Slopes. International Journal of Rock Mechanics and Mining Sciences, 97: 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004
      Li, H. B., Li, X. W., Li, W. Z., et al., 2019. Quantitative Assessment for the Rockfall Hazard in a Post⁃Earthquake High Rock Slope Using Terrestrial Laser Scanning. Engineering Geology, 248: 1-13. https://doi.org/10.1016/j.enggeo.2018.11.003
      Li, X., Zhang, J. G., Xie, Y. Q., et al, 2014. Ludian Ms 6.5 Earthquake Surface Damage and Its Relationship with Structure. Seismology and Geology, 36(4): 1280-1291(in Chinese with English abstract).
      Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High⁃Altitude Extremely⁃Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract).
      Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake⁃Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011
      Moon, T., Oh, J., Mun, B., 2014. Practical Design of Rockfall Catchfence at Urban Area from a Numerical Analysis Approach. Engineering Geology, 172: 41-56. https://doi.org/10.1016/j.enggeo.2014.01.004
      Qi, X., Yu, Z. X., Zhao, L., et al., 2018. A New Numerical Modelling Approach for Flexible Rockfall Protection Barriers Based on Failure Modes. Advanced Steel Construction, 14(3): 479-495.
      Qi, X., Zhao, S. C., Wei, T., et al., 2014. Test Study and Numerical Analysis of Flexible Protective Structure for Falling Rocks. China Civil Engineering Journal, 47(Suppl. 2): 62-68(in Chinese with English abstract).
      Riquelme, A., Tomás, R., Cano, M., et al., 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51(10): 3005-3028. https://doi.org/10.1007/s00603⁃018⁃1519⁃9
      Spadari, M., Giacomini, A., Buzzi, O., et al., 2012. Prediction of the Bullet Effect for Rockfall Barriers: A Scaling Approach. Rock Mechanics and Rock Engineering, 45(2): 131-144. https://doi.org/10.1007/s00603⁃011⁃0203⁃0
      Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall⁃Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2): 317-323(in Chinese with English abstract).
      van Veen, M., Hutchinson, D. J., Bonneau, D. A., et al., 2018. Combining Temporal 3⁃D Remote Sensing Data with Spatial Rockfall Simulations for Improved Understanding of Hazardous Slopes within Rail Corridors. Natural Hazards and Earth System Sciences, 18(8): 2295-2308. https://doi.org/10.5194/nhess⁃18⁃2295⁃2018
      Wang, S., Zhang, L. Q., Zhou, J., et al., 2020. Characteristic Analysis and Kinematic Simulation of Rockfall along Shexing Village Section of Qinghai⁃Tibet Railway. Journal of Engineering Geology, 28(4): 784-792(in Chinese with English abstract).
      Wang, X. L., Zhang, L. Q., Zhang, Z. J., et al., 2012. Rockfall Hazard Analysis of Slope at Sutra Caves of Shijing Mountain. Rock and Soil Mechanics, 33(1): 191-196(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2012.01.030
      Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Forming Process and Mechanisms of Geo⁃Hazards in Luding Section of the Sichuan⁃Tibet Railway. Earth Science, 47(3): 950-958 (in Chinese with English abstract).
      Xu, H., Gentilini, C., Yu, Z. X., et al., 2018. An Energy Allocation Based Design Approach for Flexible Rockfall Protection Barriers. Engineering Structures, 173: 831-852. https://doi.org/10.1016/j.engstruct.2018.07.018
      Yu, Z. X., Luo, L. R., Liu, C., et al., 2021. Dynamic Response of Flexible Rockfall Barriers with Different Block Shapes. Landslides, 18(7): 2621-2637. https://doi.org/10.1007/s10346⁃021⁃01658⁃w
      Yu, Z. X., Zhao, L., Liu, Y. P., et al., 2019. Studies on Flexible Rockfall Barriers for Failure Modes, Mechanisms and Design Strategies: A Case Study of Western China. Landslides, 16(2): 347-362. https://doi.org/10.1007/s10346⁃018⁃1093⁃y
      Zhang, L. Q., Yang, Z. F., Xu, B., 2004. Rock Falls and Rock Fall Hazards. Journal of Engineering Geology, 12(3): 225-231(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2004.03.001
      Zhang, L. Q., Yang, Z. F., Zhang, Y. J., 2005. Risk Analysis of Encountering Rockfalls on Highway and Method Study. Chinese Journal of Rock Mechanics and Engineering, 24(S2): 5543-5548(in Chinese with English abstract).
      Zhao, L., Yu, Z. X., Liu, Y. P., et al., 2020. Numerical Simulation of Responses of Flexible Rockfall Barriers under Impact Loading at Different Positions. Journal of Constructional Steel Research, 167: 105953. https://doi.org/10.1016/j.jcsr.2020.105953
      Zhao, S. C., Yu, Z. X., Wei, T., et al., 2013. Test Study of Force Mechanism and Numerical Calculation of Safety Netting System. China Civil Engineering Journal, 46(5): 122-128(in Chinese with English abstract).
      Zhao, S. C., Yu, Z. X., Zhao, L., et al., 2016. Damage Mechanism of Rockfall Barriers under Strong Impact Loading. Engineering Mechanics, 33(10): 24-34(in Chinese with English abstract). doi: 10.6052/j.issn.1000-4750.2016.06.ST08
      Zhou, J., Zhang, L. Q., Hu, R. L., et al., 2011. Study of Rules of Stress Waves Propagation under Various Attitudes of Large⁃Scale Fractures. Chinese Journal of Rock Mechanics and Engineering, 30(4): 769-780(in Chinese with English abstract).
      陈宙翔, 叶咸, 张文波, 等, 2019. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价. 地震工程学报, 41(1): 257-267, 270. doi: 10.3969/j.issn.1000-0844.2019.01.257
      郭亚永, 葛永刚, 陈兴长, 等, 2016. 云南鲁甸地震甘家寨滑坡基本特征及失稳机制. 山地学报, 34(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201605004.htm
      何思明, 王东坡, 吴永, 等, 2014. 崩塌滚石灾害的力学机理与防治技术. 自然杂志, 36(5): 336-345. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201405007.htm
      何思明, 吴永, 李新坡, 2010. 地震诱发岩体崩塌的力学机制. 岩石力学与工程学报, 29(增刊1): 3359-3363. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1112.htm
      李西, 张建国, 谢英情, 等, 2014. 鲁甸Ms 6.5地震地表破坏及其与构造的关系. 地震地质, 36(4): 1280-1291 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201702006.htm
      罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
      齐欣, 赵世春, 韦韬, 等, 2014. 防落石冲击柔性被动拦截网试验与数值分析. 土木工程学报, 47(增刊2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S2010.htm
      唐川, 齐信, 丁军, 等, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学, 35(2): 317-323. doi: 10.3799/dqkx.2010.033
      王颂, 张路青, 周剑, 等, 2020. 青藏铁路设兴村段崩塌特征分析与运动学模拟. 工程地质学报, 28(4): 784-792. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm
      王学良, 张路青, 张中俭, 等, 2012. 石经山藏经洞坡体滚石灾害危险性分析. 岩土力学, 33(1): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201201030.htm
      王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
      张路青, 杨志法, 许兵, 2004. 滚石与滚石灾害. 工程地质学报, 12(3): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403000.htm
      张路青, 杨志法, 张英俊, 2005. 公路沿线遭遇滚石的风险分析: 方法研究. 岩石力学与工程学报, 24(增刊2): 5543-5548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2049.htm
      赵世春, 余志祥, 韦韬, 等, 2013. 被动柔性防护网受力机理试验研究与数值计算. 土木工程学报, 46(5): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201305018.htm
      赵世春, 余志祥, 赵雷, 等, 2016. 被动防护网系统强冲击作用下的传力破坏机制. 工程力学, 33(10): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201610002.htm
      周剑, 张路青, 胡瑞林, 等, 2011. 大型结构面产状影响下应力波传播规律研究. 岩石力学与工程学报, 30(4): 769-780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(20)  / Tables(4)

      Article views (1033) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return