• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Ren Chanyue, Zhang Yifan, Li Zhengyang, Bao Zhenxin, Wang Guoqing, Liu Jianyu, 2023. Evaluation and Quantitative Attribution of Streamflow Trends over the Global Major River Basins. Earth Science, 48(9): 3518-3525. doi: 10.3799/dqkx.2022.330
    Citation: Ren Chanyue, Zhang Yifan, Li Zhengyang, Bao Zhenxin, Wang Guoqing, Liu Jianyu, 2023. Evaluation and Quantitative Attribution of Streamflow Trends over the Global Major River Basins. Earth Science, 48(9): 3518-3525. doi: 10.3799/dqkx.2022.330

    Evaluation and Quantitative Attribution of Streamflow Trends over the Global Major River Basins

    doi: 10.3799/dqkx.2022.330
    • Received Date: 2022-05-17
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Limited by the available gauging hydrological data, most studies concerning streamflow change are restricted to the regional scale. By combining two streamflow datasets and extracting their corresponding meteorological data, we obtained the most complete global hydrometeorological dataset. Furthermore, we applied the Mann-Kendall test to examine the streamflow change at 4 469 global stations. Lastly, based on the random forest method, we developed an attribution framework to quantify the contributions of precipitation (P), potential evapotranspiration (PET), leaf area index (LAI) and snowmelt to observe streamflow change. The results indicate that the global streamflow change is mainly showing a decreasing trend, with 28.2% (9.7%) of global stations showing significantly decreasing (increasing) trends. For 42.2% of global stations, streamflow changes are dominated by the LAI, while P, PET, and snowmelt dominate 35.3%, 12.5%, and 10.0%, respectively.

       

    • loading
    • Ahn, K. H., Merwade, V., 2014. Quantifying the Relative Impact of Climate and Human Activities on Streamflow. Journal of Hydrology, 515: 257-266. https://doi.org/10.1016/j.jhydrol.2014.04.062
      Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., et al., 2017. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resources Research, 53(10): 8475-8486. https://doi.org/10.1002/2017wr021593
      Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
      Ceballos-Barbancho, A., Morán-Tejeda, E., Luengo-Ugidos, M. Á., et al., 2008. Water Resources and Environmental Change in a Mediterranean Environment: The South-West Sector of the Duero River Basin (Spain). Journal of Hydrology, 351(1-2): 126-138. https://doi.org/10.1016/j.jhydrol.2007.12.004
      Chai, R. F., Chen, H. S., Sun, S. L., 2018. Attribution Analysis of Dryness/Wetness Change over China Based on SPEI. Journal of the Meteorological Sciences, 38(4): 423-431 (in Chinese with English abstract).
      Chang, Q. X., Sun, Z., Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, Online (in Chinese with English abstract).
      Chen, Z. W., 2017. Spatio-Temporal Evolution of Runoff in China under Climate Change (Dissertation). Tsinghua University, Beijing, 48-59 (in Chinese with English abstract).
      Gu, X. H., Zhang, Q., Li, J. F., et al., 2020. Impacts of Anthropogenic Warming and Uneven Regional Socio-Economic Development on Global River Flood Risk. Journal of Hydrology, 590: 125262. https://doi.org/10.1016/j.jhydrol.2020.125262
      Hannaford, J., Buys, G., 2012. Trends in Seasonal River Flow Regimes in the UK. Journal of Hydrology, 475: 158-174. https://doi.org/10.1016/j.jhydrol.2012.09.044
      Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of Climate Change on Surface Water Resources. Earth Science, 32(3): 425-432 (in Chinese with English abstract).
      Li, Q., Wei, X. H., Zhang, M. F., et al., 2017. Forest Cover Change and Water Yield in Large Forested Watersheds: A Global Synthetic Assessment. Ecohydrology, 10(4): e1838. https://doi.org/10.1002/eco.1838
      Li, T. S., Xia, J., 2018. Analysis of the Influence of Climate and Vegetation Change on Runoff in the Middle and Upper Reaches of the Pearl River Basin Based on Budyko Hypothesis. Advances in Earth Science, 33(12): 1248-1258 (in Chinese with English abstract).
      Li, Z. X., He, Y. Q., Wen, Y. H., et al., 2010. Response of Runoff in High Altitude Area over the Typical Chinese Monsoonal Temperate Glacial Region to Climate Warming. Earth Science, 35(1): 43-50 (in Chinese with English abstract).
      Liu, N., Harper, R. J., Smettem, K. R. J., et al., 2019. Responses of Streamflow to Vegetation and Climate Change in Southwestern Australia. Journal of Hydrology, 572: 761-770. https://doi.org/10.1016/j.jhydrol.2019.03.005
      Musselman, K. N., Addor, N., Vano, J. A., et al., 2021. Winter Melt Trends Portend Widespread Declines in Snow Water Resources. Nature Climate Change, 11(5): 418-424. https://doi.org/10.1038/s41558-021-01014-9
      Ning, T. T., Li, Z., Liu, W. Z., 2017. Vegetation Dynamics and Climate Seasonality Jointly Control the Interannual Catchment Water Balance in the Loess Plateau under the Budyko Framework. Hydrology and Earth System Sciences, 21(3): 1515-1526. https://doi.org/10.5194/hess-21-1515-2017
      Rodell, M., Houser, P. R., Jambor, U., et al., 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381
      Stein, L., Clark, M. P., Knoben, W. J. M., et al., 2021. How do Climate and Catchment Attributes Influence Flood Generating Processes? A Large-Sample Study for 671 Catchments across the Contiguous USA. Water Resources Research, 57(4): e2020WR028300. https://doi.org/10.1029/2020WR028300
      Sun, S. L., Chen, H. S., Ju, W. M., et al., 2014. On the Attribution of the Changing Hydrological Cycle in Poyang Lake Basin, China. Journal of Hydrology, 514: 214-225. https://doi.org/10.1016/j.jhydrol.2014.04.013
      Teuling, A. J., de Badts, E. A. G., Jansen, F. A., et al., 2019. Climate Change, Reforestation/Afforestation, and Urbanization Impacts on Evapotranspiration and Streamflow in Europe. Hydrology and Earth System Sciences, 23(9): 3631-3652. https://doi.org/10.5194/hess-23-3631-2019
      Wang, S., Fu, B. J., He, C. S., et al., 2011. A Comparative Analysis of Forest Cover and Catchment Water Yield Relationships in Northern China. Forest Ecology and Management, 262(7): 1189-1198. https://doi.org/10.1016/j.foreco.2011.06.013
      Wei, X. H., Li, Q., Zhang, M. F., et al., 2018. Vegetation Cover—Another Dominant Factor in Determining Global Water Resources in Forested Regions. Global Change Biology, 24(2): 786-795. https://doi.org/10.1111/gcb.13983
      Xia, J., Shi, W., 2016. Perspective on Water Security Issue of Changing Environment in China. Jaurnal of Hydraulic Engineering, 47(3): 292-301 (in Chinese with English abstract).
      Yang, D. W., Zhang, S. L., Xu, X. Y., 2015. Attribution Analysis for Runoff Decline in Yellow River Basin during Past Fifty Years Based on Budyko Hypothesis. Scientia Sinica (Technologica), 45(10): 1024-1034 (in Chinese with English abstract). doi: 10.1360/N092015-00013
      Yang, Y. T., Zhang, S. L., McVicar, T. R., et al., 2018. Disconnection between Trends of Atmospheric Drying and Continental Runoff. Water Resources Research, 54(7): 4700-4713. https://doi.org/10.1029/2018WR022593
      Yuan, X., Jiao, Y., Yang, D. W., et al., 2018. Reconciling the Attribution of Changes in Streamflow Extremes from a Hydroclimate Perspective. Water Resources Research, 54(6): 3886-3895. https://doi.org/10.1029/2018WR022714
      Zhou, G. Y., Wei, X. H., Luo, Y., et al., 2010. Forest Recovery and River Discharge at the Regional Scale of Guangdong Province, China. Water Resources Research, 46(9): W09503. https://doi.org/10.1029/2009WR008829
      Zhou, S., Yu, B. F., Huang, Y. F., et al., 2015. The Complementary Relationship and Generation of the Budyko Functions. Geophysical Research Letters, 42(6): 1781-1790. https://doi.org/10.1002/2015GL063511
      Zhu, Z. C., Bi, J., Pan, Y. Z., et al., 2013. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sensing, 5(2): 927-948. https://doi.org/10.3390/rs5020927
      柴荣繁, 陈海山, 孙善磊, 2018. 基于SPEI的中国干湿变化趋势归因分析. 气象科学, 38(4): 423-431 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804001.htm
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 网络首发. https://kns.cnki.net/kcms/detail/42.1874.p.20220407.1648.008.html
      陈钟望, 2017. 气候变化下我国径流的时空演变(硕士学位论文). 北京: 清华大学, 48-59.
      郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学, 32(3): 425-432. http://www.earth-science.net/article/id/3471
      李天生, 夏军, 2018. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响. 地球科学进展, 33(12): 1248-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201812007.htm
      李宗省, 何元庆, 温煜华, 等, 2010. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应. 地球科学, 35(1): 43-50. doi: 10.3799/dqkx.2010.005
      夏军, 石卫, 2016. 变化环境下中国水安全问题研究与展望. 水利学报, 47(3): 292-301. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201603007.htm
      杨大文, 张树磊, 徐翔宇, 2015. 基于水热耦合平衡方程的黄河流域径流变化归因分析. 中国科学: 技术科学, 45(10): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201510003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (1362) PDF downloads(135) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return